
AD-AO87 412 YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE F/6 912
DRAFT SOFTWARE METRICS PANELS FINAL REPORT. PAPERS PRESENTED AT-ETC (U)
JUN A0 A J PERLIS- F 6 SAYWARD, M SHAW NOOOSR-79-C-0672

UNCLASSIFIED RR-182/80 NL

' ,4 .nmEEmhhEEEE

111 1111111 I1I11.5

11111 111120 B 0

11111_.25 _LH4

MICRQWOPY fESOLUVIQN TEST HA T,

LEVELr

LC I

& .j

",: is d.ocmen, ha, be.. .appe

WW

,- / fLditor publi rele s a d s l; I

YALE UNIVERSITY
- #. DEPARTMENT OF COMPUTER SCIE E

V7 04

U DatSoftwar .e Metr-i cs Pan -el . Final .Repoirti- (I iJJ' 'K yratpers Presented at the 30 June 1980-

Meetin on Software Metrics, Washitn n~ J -..

TI 7n erlisereerick G.Tawardf_ _

4m*ary,,~hawrvditors ____

This research was sup ed in part by the Office of Naval Research
under Research Contract - - -

All the material contained in this document is in draft form. As
- c!m~te. 1 to-t~.r-I-As

2WV

(for l1
. ~ Nf apped

-9)r its

Contents
4a

Preface I

Introduction 1-1
The Life Cycle Model
The Role of Software Metrics in Life Cycle Decisions
Observations and Limitations of the Study
The State of the Art and Research Recommendations

Toward a Scientific Basis for Software Evaluation 2-1
J. Browne - University of Texas
M. Shaw - Carnegie-Mellon University

Design of Software Experiments 3-1
F. Sayvard - Yale University

Data Collection, Analysis and Validation 4-1
V. Basili - University of Maryland

Experimental Evaluation of Software Characteristics and 5-1
Programmer Performance

B. Curtis - General Electric Company

Software Forecasting 6-1
R. DeMillo -Georgia Institute of Technology
R. Lipton - Princeton University

Controlling Software Development Through The Life Cycle Model 7-1
A. Perlis - Yale University

Resource Models 8-1
V. Basili - University of Maryland

High Level Language Metrics 9-1
J. Sammet - IBM Corporation

Performance Evaluation: A Software Metrics Success Story 10-1
J. Browne - University of Texas
W. Lynch - Xerox Corporation

Statistical Measures of Software Reliability 11-1
R. DeKillo - Georgia Institute of Technology
F. Sayward - Yale University

The Measurement of Software Quality and Complexity 12-1
B. Curtis - General Electric Company

Complexity of Large Systems 13-1
L. Belady - IBM Corporation

Software Maintenance Tools and Statistics in the Life Cycle of 14-1

a Computing Application
M.Muller - World Bank

A Scientific Approach to Statistical Software 15-1
1. Francis - Cornell University

When is "Good" Enough? Evaluating and Selecting Software Metrics 16-1
M. Shaw - Carnegie-Mellon University

Annotated Bibliography

. z,

*7

X

U_D.p. BCTZ__
RE: ~ ~ ~ ~~ , PrcsfncfdratCpDraft ~ Uz cop sn,?db rcse e r ot

3E: PrcsG o rafton Copyoe 4

0rf oys-idb rcse e r ot

PREFACE

During the Spring of 1979 Marvin Denikoff of the Office of Naval

Research asked for our opinion on the merit of the research which was

being conducted on "software metrics." After a quick review of the

literature it became apparent that the central issues revolved around the

following question:

Can there be assigned to software and the processes

associated with its design, development, use, maintenance,
and evolution indices of merit that can support
quantitative comparisons and evaluation of software?

We decided that an in-depth study was needed to identify useful areas in

software metrics and software experimentation, to analyze the research

being done in these areas, and to recommend directions which these areas

should follow in the near term. Eventually this work would lead to the

development of a scientific basis for analyzing and evaluating software

which is so desperately needed by those involved with software

management*

We recognized early that a large fraction of the computer science

research community held little hope for software metrics. Consequently

we decided that part of our effort should be In focusing the attention of

the research community on the problems and methods in software metrics.

We perceived that these ends could best be met by organizing two

groups of scientists: an Advisory Group and a Study Panel. Each member

of the Study Panel would be assigned a software metric area to study and

evaluate. The Advisory Group would be composed of distinguished senior

scientists who would provide on-line advice to the Study Panel. The

Oembers selected for the two groups were

Ii

Advisory Group

Allen Newell, Carnegie-Mellon University
Jack Schwartz, Courant Institute

Study Panel

Vic Basili, University of Maryland
Les Belady, IBM Corporation
Jim Browne, University of Texas
Bill Curtis, General Electric Company
Rich DeMillo, Georgia Institute of Technology
Ivor Francis, Cornell University
Richard Lipton, Princeton University
Bill Lynch, Xerox Corporation
Merv Huller, World Bank
Alan Perlis (Chairman), Yale University
Jean Sammet, IBM Corporation
Fred Sayward (Assistant Chairman), Yale University
Mary Shaw (Assistant Chairman), Carnegie-Mellon University

An organizational meeting was held at Yale University September

10-12, 1979 at which time an initial state of the art presentation was

given and the software metrics issues were discussed. Members were

initially asked to study the current status of a variety of software

metric areas.

A second meeting was held on January 31-February 1, 1980 immediately

following the Principles of Programming Languages Conference at Las

Vegas. State of the art evaluations were presented and final topics were

assigned.

The draft papers in this report contain state of the art evaluations

and directional recommendations for several areas of software metrics.

They are to be presented at an open meeting to be held in Washington, DC

on June 30, 1980. Efforts have been made to have a cross section of the

computer science research community attend this meeting.

0 ii

Our plans call for taking the final versions of the papers contained

C, in this report and the questions, answers, and comments made at the June

30 meeting and integrating them into a book to be published during the

Fall of 1980. We hope that this volume will serve as a focal point in

the development of a science of software metrics.

Alan Perlis
Fred Sayvard

Mary Shaw

Lii

INTRODUCTION

The Life Cycle Model

Software metrics is a new area of computer science aimed at

assigning quantitative indices of merit to software. Here software

means more than simply source code; .m...me-softwaref as a generic

for all the stages of tailoring a computer system to solve a problem,%- S $ D k

All software passes through the following seven stages in its life

cycle:

(1) requirements analysis,

(2) specification

(3) design,

(4) implementation,

(5) testing and integrations

(6) maintenance and enhancement.

(7) replacement or retirement,

Since software specification is always imprecise and since the

demands on software change with time, backtrack cycles to earlier

stages often take place. It is not uncommon for several stages to

co-exist and influence each others' progress.

The Role of Software Metrics In Life Cycle Decisions

The purpose of software metrics is to help answer the questions

which arise as the life cycle progresses. Two questions common to all

the stages are:

1-2

Is it time to go onto the next stage?

Is a backtrack to an earlier stage needed?

At each stage there is also a set of questions about the software and

the project whose precise answers are needed to dictate an optimal

life cycle control flow. Software metrics addresses such questions

but it is not sufficiently developed yet to provide precise answers to

most of them.

1) Requirements Analysis

While this area of system development has an enormous influence

on system software, the questions of concern here must lie outside the

domain of software metrics -- for it is not until the requirements are

fixed that the structure of the software can begin to take shape.

What is needed is a link from requirements analysis to software

specification, but this link must necessarily not be

software-oriented, just as a link from an informal to a formal model

cannot be formal.

2) Specification

At this stage an informal statement of the problem and its

proposed solution has been prepared. Questions to be answered

include:

What is the cost of production?
/

What are the memory requirements of the software?

What are the speed requirements of the software?

Nov long will it take to produce?

1-3

When will it have to be replaced?

What manpower loading should be used?

Is the project feasible? That is, does the expected

production time exceed the time when the software will

be of use?

3) Design

At this state a detailed formal statement of the problem and its

proposed solution have been prepared. This includes a development

plan for all future stages of the life cycle. Questions to be

answered include:

What machine configuration to use?

What language to use?

Is it possible to incorporate the work of others or

must everything be built in house?

How will the availability of tool X affect factor Y?

How close to its limits is the system expected to run?

What are the potential future enhancements?

Should the system be all encompassing from which

subsystems are carved out or should the system be

primitive on which specific systems are built?

4) Implementation

Some questions need to be answered before implementation begins

and others arise during Implementation. They include:

(9

1-4

What developmental technology should be used? Should

the system be built all at once or should it be

constructed through a sequence of executable

prototypes?

What programming discipline should be used? Chief

programmer? Cottage industry?

Is the project on schedule?

Is the project on the budget?

Is the implemented code correct? If not, how close is

it to meeting the specification?

What is the quality of the implemented code? Is it

understandable? Is it maintainable? Is it

enhanceab le?

5) Testing and Integration

At this stage the chief question is: Does the implementation

meet the specification? This usually reduces to questions concerning

what the implementation actually does, what resources it uses, and how

easy it is to use. Such questions can be asked about individual

modules and about integrated modules working in concert. The

decisions to be made include:

Should testing be done top down or bottom up?

Which of the available testing methodologies should be

used?

What levels of satisfactory testing are sufficient?

Now well does the testing environment approximate the

execut ion enviroment?

Now vill subsequent error reports be handled?

C

1-5

6) Maintenance and Enhancement

These two very different activities are often linked because both

result in a re-release of the system. Maintenance is similar to

testing except that the software execution environment has changed

from a controlled world of testing to the hurly-burly of actual use.

Every repair and update must be tested, so the questions generated by

maintenance are similar to the ones above in the testing stage.

Enhancement, on the other hand, is a post-release augmentation of the

system specifications to meet unforeseen demands. Enhancement may

cause a backtrack all the way to the requirements analysis stage. The

questions we ask about enhancement include:

What is the cost of the enhancement? Is it worthwhile?

Will the enhancement speed up or delay replacement?

What is the re-release strategy?

Once it has been decided that an enhancement should take place, there

is an automatic feedback at least to the specification stage of the

life cycle.

7) Replacement and Retirement

Among the questions asked when considering replacement or

retirement of a system are:

Has the problem outgrown the program?

Has technology moved beyond the program?

Has a critical support resource for the system become

unavailable?

Would it cost less to re-build the system than to

maintain and enhance the system?

1-6

How should the system be phased out?

Should there be a change in the language in which the

system is written? In the machine on which the system

runs?

Observations and Limitations of the Study

Because of the time constraints on our study, the size of the

problems under investigations, and the extremely uneven level of

quality attained by software projects, we have not attempted to

present a complete survey. We have concentrated on those issues in

software metrics that require and will benefit from near term

research.

Except in a small way we have not addressed the issue of

manpower, although undoubtedly the competence, availability, and

training of manpower plays an important role in defining the set of

metric-oriented questions for a particular software project.

We have come to recognize the existence of certain critical

issues in relating software metrics to other areas of computer

science. For example, software should be seen as very different from

algorithms -- not so much in representation but in size, variability,

and rate of change. In software, evolutionary complexity is probably

more important than the classical time and space measures with which

computer science has been concerned so far.

1-7

There is a tendency in studying software (or anything else, for

that matter) to be satisfied with mere curve-fitting rather than with

developing models whose inherent structure illustrates one or more

important aspects of the topic being investigated. Indeed, throughout

our work we have had a growing awareness that the present software

management needs overwhelm current insights in computer science.

Needs have overwhelmed insights to such an extent, and there has been

so little order, discipline, and content in the resulting practice of

software metrics, that a significant portion of the computer science

research community is completely turned off and chooses not to perform

research in software metrics. But it is important that computer

science not focus on premature or incorrect developments to discredit

the field. Software will grow more complex, not simpler, and the need

for software metrics will grow apace.

No matter what aspect of software one studies, there is a

noticeable lack of collected and categoried field data on which to

build. RADC has recently initiated the categorization of the

information which does exist, but since past software projects have

rarely integrated data collecting into their production schedule there

is really not much to go on. Serious large-scale data collection is

imperative if order is to be brought into the software field.

Of course, collected field data is more meaningful when related

to the data and conclusions of software experiments. We view the need

for a variety of well-thought-out and well-designed software

experiments as crucial if software metrics is to develop as a science.

U j

1-8

There is a natural dichotomy in the interests of those who study

software metrics. There are those whose interests lie in studies of

the creation and management of programs -- in human performance. And

there are those whose interests lie in studies of the objects

produced -- in program performance. Although it is generally agreed

that there ought to be a natural relationship between these two types

of studies, we see no unifying theory developing in the near future.

Software metrics suffers at the moment in that virtually

everything it studies is incommensurate with everything else.

Consider how extraordinarily difficult it is to make a definitive

statement comparing a parameter on software design, management, or

construction if one is in APL versus if one is in COBOL. For the

field to become more of a science there must be a dramatic increase in

the number of precisely defined universally accepted software objects

and parameters. But how do we arrive at such a desirable state?

There is little doubt that the task would be significantly easier if

-here were one well-defined sufficiently powerful programming language

used by all. But this has not come to pass. No one wishes to be

constrained.

Since there is little likelihood that anyone will accept

constraints on language, machine, and methodology merely in order to

advance software metrics we must first study the relationships among

the languages, machines, and methodologies we use and attempt to find

the nature of the transformations between one and another. Otherwise

the experiments, the data, the models, and the consequent theory of

software metrics will have little value outside the realm of the

laboratory.

"' ' I ll . . . II I l II.. . . . ,

1-9

Software seems almost infinitely malleable, and each individual

change seems to require almost no effort. Yet to shape a piece of

software to a precise end with no unforeseen consequences can

paradoxically seem to require almost infinite effort. It is the task

of software metrics to attach values and costs to every movement of

software between these two extreme views.

The State of the Art and Research Recommendations

We now present an overview of the state of the art assessments

and the near term research direction recommendations made in the

papers which appear in this report. Three themes keep surfacing in

the papers -- a need for more and better collected data, a need for a

developing techniques for translating ideas and results from one

domain to another, and a need for taxonomies of metric oriented terms

and definitions.

In "Toward a Scientific Basis for Software Evaluation" Browne and

Shaw explain how a great deal of energy is regularly invested in

making measurements on software and its development process. The

techniques of description, measurement, and evaluation are, however,

mostly ad hoc. Most of the analysis and data collection techniques

haven't been generalized beyond the local system for which they were

developed. There is a general lack of a scientific foundation in this

area on which to derive invariant principles from observations and

experiments.

- ii

1-10

They recommend that future experimental work be based on the

traditional principles of science where the first considerations are

principles which are invariant across all software and hierarchies of

abstract models. Although there now are several popular predictive

models, they see more long term benefits coming from structural models

of software. It is the development of this area for which they

recommend support, with concentration first being on learning from

structural models for specific systems.

In "Design of Software Experiments" Sayward summarized the

principles used in conducting the many on going software experiments

aimed at understanding and Improving software development, testing,

and maintenance. The designs of these experiments have nearly all

followed the orthodox many subject random group design popularized by

Sir Ronald Fisher. This area has led to the formulation of many

interesting hypotheses. However, there are some basic problems with

internal and external experiment validity which this area must

overcome.

Sayward recommends continued support for the type of small scale

many subject experiments which have been done since they will lead to

interesting new hypotheses and they will produce a gradual refinement

of design techniques for strengthening internal validity. He also

suggests that a new approach, the single subject design, might be more

natural for software experiments and recommends conducting

intermediate scale single subject experiments as a potential way of

strengthening external validity.

1)J

1-11

In "Data Collection, Analysis and Validation" Basili gives a

variety of means for collecting data on software projects and he

suggests approaches to dealing with the validity of the data. The

means include the types of forms to have filled out and types of

automated data collecting programs. Validity considerations include

detecting incorrectly filled out forms and the detection of redundant

data.

He recommends that more effort be put into establishing and

refining a very large software lifecycle data base. It would be

helpful to find ways of integrating the use of metrics into the data

base categorization process. Establishing agreed on data collection

terminology would also be helpful.

In "Experimental Evaluation of Software Characteristics and

Programmer Performance" Curtis finds that most experimental studies on

software metrics do not demonstrate cause-effects relationships

between software characteristics and programmer performance. There

are many uncontrolled factors which could have influenced the observed

data. The biggest problem lies in replicating the environmental

conditions under which real-world software is built.

Curtis recommends establishing long term multiple institute

research programs which combine to replicate software experiments to

see if the results are repeatable. He also recommends that

experimental work be initiated on two forgotten areas -- programming

language differences and the early lifecycle stages such as

requirements and specification.

(9

1-12

In "Software Forecasting" DeMillo and Lipton c"L-A that the

present searches for simple formulae for predicting the cost of large

scale software efforts are very likely to fail. They explain how

measurement theory rejects most of the formulae that have been

suggested. On a positive side, they feel that the other popular

method of predicting cost from historical data is more likely to

produce success.

They recommend that predicting from historical data receive

continued support and that more effort and thought go into

establishing a better data base for these studies. They also

recommend that an analogy from weather forecasting suggests a

refinement which should be explored. That is, the development of

micro theories of software costing (which don't necessarily scale up)

and the development of large scale computational techniques (such as

clustering) which integrate the micro theories to make a cost

prediction for large systems.

In "Controlling Software Development Through The Life Cycle

Model" Perlis states that almost no present systems are designed by

taking a total view of the software lifecycle into account. Systems

are designed to minimize design stage feedbacks, to localize the

effects of maintenance, and to delay enhancements. No one ever thinks

about making replacement easy. This view is what Perlis calls the

"pre-structured approach." It assumes thdt there is but one pass

through the lifecycle which, if all else is held constant, yields a

perfectly designed and built system. Little attention Is paid to

(building prototype systems -- they aren't necessary under this view.

1-13

Perlis recommends that a serious look be given to the sequence of

executable prototype systems approach to software design as an

alternative to the pre-structured approach. When coupled with the

proper choice of language quite possibly this approach is more

effective in dealing with the inevitable design changes, maintenance

activities, and system enhancements.

In "Resource Models" Basili gives two approaches to predicting

the resources (such as computer time, personnel, and dollars) needed

for large scale software projects: formulating models and using

historical data to estimate the constants in the resulting formulae;

and, deriving equations from models of the problem solving process.

He recommends that experiments be conducted aimed at

substantiating the formulae which have been derived. He also feels

that research aimed at gaining insights on the software lifecycle from

the derived formulae should be supported.

In "High Level Language Metrics" Sammet observes that high level

programming language metrics are quite different and often confused

with program complexity metrics. For comparing languages she

categorizes two types of metrics: technical and non-technical. Among

tne former are feature counting and benchmarking. The latter include

time to train personnel to be proficient in the language. The state

of the art is that most of these techniques are more subjective than

obj ec tive .

1-14

Sammet includes precise definitions of terms, quantitatively

measuring the differences between languages, measuring the

non-procedurality of languages, and measuring programmer productivity

in a language among the most important research topics to support.

In "Performance Evaluation: A Software Metrics Success Story"

Browne and Lynch find that performance evaluation of software systems

is an area which has a set of generally accepted metrics for both

external aspects (eg., response time) and internal aspects (eg., queue

length). There is also a set of generally accepted abstract models

which capture the salient concepts of performance and system tuning.

They recommend that support be given to a fundamental performance

evaluation lack: software engineering procedures for developing

software systems with desired values for given performance metrics.

In "Statistical Measures of Software Reliability" DeMillo and

Sayward list two current scales of software reliability. First is the

Boolean scale of formal verification, formal testing, and special

programming disciplines. These don't really address a degree of

reliability. The other is the continuous scale gotten by blindly

applying hardware reliability theory to software. These attempts have

led to unnatural and often contradictory assumptions. The basic

problem is that software is not a fixed object and hence the

distributional requirements of hardware reliability theory cannot be

satisfied.

(.

1-15

They recommend that, rather than striving for ways to assign a

probability of correct operation to software, attempts to assign a

probability to the processes used to validate software be supported.

These validation processes are fixed over time and thus distributions

for them can be studied empirically. Then a Baysian based "level of

confidence" in the correct operation of software validated by the

process can be derived.

In "The Measurement of Software Quality and Complexity" Curtis

explains that while there are many software metrics for measuring the

product (programs) there are few metrics for measuring the process

(programming). There have been several software experiments conducted

on relating these two concepts in order that the product metrics can

be used to predict the process time. Several interesting

relationships have resulted, but it is far too early to accept them as

laws.

Curtis recommends support for efforts to refine metrics, weeding

out the redundant ones, and for efforts to validate metrics on larger

data bases. Another important area of research is the development and

validation of predictive equations.

In "Complexity of Large Systems" Belady finds that there are many

speculative ideas around on the complexity of small programs but that

few of them have been adequately tested. The is much duplicated

uncoordinated effort. The two most important concepts for the

complexity of large systems are evolutionary complexity and the time

required to do a programing task. Little is known about evolutionary

(.9 complexity.

1-16

Belady sees the need for a DOD coordinated effort to establish a

large data base for validating a small standard set of complexity

metrics. Also this data base could be studied in a search for

patterns and trends in the evolution of large systems. This would

lead to models of software evolution from which would emanate testable

hypotheses. Another potentially fruitful study would be an

exploration on the use of locality of information in large systems.

In "Software Maintenance Tools and Statistics in the Life Cycle

of a Computing Application" Muller find that there is no real use of

metrics in the maintenance lifecycle phase. Cost and profile data is

usually gathered but there is no conceptual model of maintenance and

hence no related set of software metrics has developed. The best

things available are software tools such as the Programmer's Workbench

which are aimed at easing bookkeeping tasks.

In order to initiate steps to improve this Muller list several

research directions which include precise definitions of maintenance

terms, a refinement of. the maintenance data collection process, ways

of detecting documentation deterioration, and ways of detecting errors

introduced by maintenance activities.

In "A Scientific Approach to Statistical Software" Francis

summaries what has been done in evaluating statistical packages. The

two questions of concern are software accuracy and cost of use.

Quantitative measures have been defined for both questions and

experiments have been conducted on the accuracy of these metrics. The

experiments have relied on developing a standard set of problems.

l

1-17

Francis recommends an investigation into developing standard

programs for the evaluation of metrics. He also recommends that a set

of standard experiments be developed.

In "When is "Good" Enough? Evaluating and Selecting Software

Metrics" Shaw examines the methods used by researchers to evaluate

their proposed metrics and to compute the efficiency of metrics.

Software metrics are either direct (eg., cost) or indirect (eg., time

for cost). The majority of those found are indirect. Reasons for the

proliferation of software metrics is that there is little attempt to

find a basis set of direct metrics accompanied by models relating them

to indirect metrics. Also metrics are applied without regard to

precision or cost.

She recommends research into finding a small set of basis metrics

which span most needs. This would avoid the syndrome of inventing a

new metrics for each study and would entail finding models which

relate direct and indirect metrics. Also recommended is a more

critical use of classical statistics in evaluating metrics.

11A

2-1

Toward a Scientific Basis for Software Evaluation

J. C. Browne Mary Shaw
Department of Computer Science Computer Science Department

University of Texas Carnegie-Mellon University
Austin, Texas Pittsburgh, Pennsylvania

June, 1980

Abstract: An examination of the general practice of science, and in particular the
interaction of experiment and analysis to generate strpcturally based system models,
suggests a paradigm for the development of a science of software evaluution. We present
a view of the development of structured models that is appropriate to so5tware evalu?;'.. I
We siuggest research problems and research techniques wh'ch can lead to improv.e-; nt in
software measurement and evaluation methods.

1 The Problem of Softvare Evaluation
Most quantitative techniques for describing and evaluating software system-; have been developed

or a largely ad hoc basis. Large scale software development has been forced on us by the

ur precedented speed with which computer systems have been integrated int the economic life of

th s country. The need for control over the software development process hes created a "software

er gineering" discipline whose purpose is to establish operational procedures r3r the development of

"C.uality" software. Unfortunately, techniques for predicting and evaluating - oftware "quality" and

p(rformance have not yet emerged in practice. The purpose of this parr is to examine the

in' Bllectual tools and research attitudes that will be required before reliable me .ric techniques can be

dc veloped.

A great dea of energy is regularly invested in making measurements f software arid of its

development process. The techniques of description, measurement and evaluation are, however,

la,'gely ad hoc. Most of the analysis techniques and even the data collection techniques have not

been generalized beyond the local system or application for which they were c eveloped. As a result,

la'ge-scale comparisons of systems and evaluations at a level abs ract from particular

in plomentalions are rare, and now measurement efforts can be expected to re luire the development

of tools from scratch.

;n other words, present metric icchni-jues are not readily extended to now kinds of systems, new

kinds of questions, or new development environments. As a result, there is no direct quantitative

b.cis fIr comparing prograrns or softwere engineering methodologies. The Economic ramifications

2-2

of this lack of extendibility are twofold. Each major software system requires a software engineering

job starting almost from scratch. In many cases this engineering task is either slighted or totally

ignored, leading to severe economic penalties in terms of effort, cost and delay. In addition, software

engineering remains a high-technology discipline without adequate rules of standard practice; every

system development requires expert skills and defies automation. This has serious economic

significance, for the productivity of a group of technical personnel important to the economy is of

paramount interest.

At present, software engineering is a technical activity for which we have developed a large set of

ad hoc engineering techniques without a corresponding scientific foundation. We believe that this

shortcoming is at the heart of many software engineering problems, including software metrics.

There is substantial economic incentive for developing such a scientific basis for software evaluation.

In Section 2 of this paper, we explore the proper relation between science and engineering and the

role of modelling techniques in both. Section 3 discusses the role of scientific techniques and

attitudes in software methodology. Section 4 examines current practice and points out discrepancies.

Section 5 proposes steps to reduce the differences.

2 The Role of Models in Science and Engineering
We begin our description of the need for a scientific basis for software metrics by examining the

reated techniques of abstraction and iiodelling and by discussing the proper relation between

sc ence and engineering.

2.1. Complexity and Abstraction

Programs are not the only complex systems that humans must deal with. The national economy,

fo example, is far more complex; even th., motion of the molecules in a simple p iysicat object is many

orders of magnitude more complex than he most complex program. However, io human completely

understands the national economy or mc¢ecular structure in all their fine detail. In order to deal with

complex situations we use a powerful tc(chnique -- abstraction. We deal with complex systems by

igioring their details; we develop models which reflect only certain important, macroscopic

bN havioral properties.

Newton's laws of motion, for example are a model of physical reality. This model abstracts from

th 3 enormous complexity of the motior of an object's component particles and describes gross

properties of their aggregate behavior. For nearly all purposes the precise motions of the molecules

in an object are irrelevant. The only relevant information is expressed by summarizing the individual

motions in some way. For example, we speak of the velocity of the object (which is actually the

) average velocity of all its molecules), its temperature (a measure of the kinetic energy of the molecular

2-3

motion), and so on. When we summarize many details in a single property (velocity or temperature,

for instance) we are abstracting from the details, or creating a model of the system.

For some purposes these gross abstractions may be inadequate. For example, the structure of a

crystal depends on the properties of its constituent molecules. The abstraction used to describe

crystalline properties must contain more detail than is used to describe the temperature of an object

that happens to be a crystal. If we wish to understand chemical reactions we must consider an even

more detailed model: the atomic structure of our materials. Notice something very important. In each

of these cases we merely use another model, another abstraction of reality. Each model contains just

enough detail to explicate the phenomena under study. To analyze the motion or temperature of an

object, we can totally ignore its molecular structure. To analyze its simple chemical properties, we

can ignore, for example, the wave-like behavior of subatomic particles. Only if we were to study

nuclear reactions would we need a still more detailed model, namely quantum mechanics.

It is clear, then, that a deep philosophical assumption underlying modern science is that the

complexity of reality can be understood by understanding a hierarchy of models -- some that describe

macroscopic behavior by ignoring detail, others that successively explain inc-easingly microscopic

behavior. Whether this simplifying assumption is entirely valid can be debated, but our limited

intellectual capacity forces us to mak3 it; without this assumption, we coLId not cope with the

complexity surrounding us.

2.2. Science and Engineering

Engineering deals with the development and application of operational pro;edures for producing

products or services. Science deals wth models that explain relationships between the significant

variables of systems. To do this, scie ice must isolate and define the signif cant variables of the

s stems under study. These significtnt variables are usually identified bl their appearance in

st itements of invariant relations or prin,.iples; system models established by srience will incorporate

th=se invariant relations. Engineering design of operational procedures is narmally founded upon

sc;ientific models of systems.

Science usually starts with observations (measurements) and hypothesizes a set of principles or

axioms to explain the observations. These axioms are used to derive or construct models of

observable systems. The parameters or variables of these models may be deriv 3d from the axioms, or

they may be estimated from observatic n. The model is then used to make iiew predictions about

properties (metrics) of the observed system. The final step is to parform experi ients (observations in

controlled or understood environments) to determine the accuracy and robustness of models and of

the sttements of principles. The cycle of hypothesizing and validating models is then continued with

- the additional observations. Figure 1 illustrates this fundamental cycle of the scientific method; it is

2-4

important to note that the scientific analysis process of Figure 1 begins with measurements.

invariant
principles
or relations

.observations 1
measurements evaluatable andexperiment~s ; - Jpredictive models

parameters/metrics

metrics

Figure 1. Model development cycle.

It is a crucial point that a single set of underlying principles generally serves .is the basis for models
of many systems in a broad variety of contexts. This modelling paradigm applies as well to the soft
sciences as to the hard sciences. The difference is in essence that in the soft sciences such as
ps ychology or social studies the problem; are generally of a statistical or proba'ilistic nature.

Two kinds of models can be supporte I by measurements and statistics. The first, and the one on
which we concentrate here, is the analytic or structural model, in which a system is described in terms

of the way it is presumed to work and predictions about its behavior are derivi ., from measurements
or predictions about the behavior of its components. The second kind is the cescriplive or empirical

o0 phenomenological model, in which ;io attempt is made to model the underlyng structure and
piB dictions about system behavior are made by extrapolating from previous clbservations about the
re ation of system behavior to the values of various inputs. Structural models are most likely to be
feasible for systems that are smal enough for the investigator to make reasonable hypotheses about
how they work. Descriptive models are more appropriate for large systems in which the underlying

st:ucture is not well understood, but for which it Is important to be able to make some sort of

2-5

predictions. Although both kinds of models have legitimate roles in software engineering, good

structural models are the mark of a mature engineering discipline. We therefore concentrate on the

development process for structural models.

The determination of fundamental (metric) properties is an essential step in the formulation of a

structured model. Fundamental properties are identified by their appearance in the invariant relations

which unite observations across many environments; these invariants commonly express

conservation relations. Identification of the fundamental properties is a major task of the model

builder. However, instead of asking, "what are the fundamental properties of software systems?", we

must seek to identify the invariant principles or relations which underlie experimental observations.

The identification of fundamental properties or primitive metrics will emerge from the formulation of

these invariants. We can then construct models for particular experiments, systems or methodologies

with the guidance that the models must be consistent with the invariant principles, and they will

depend on values of measurable inputs. These models will incorporate the fundamental properties as

integral parts of their structure; the models may be constructive (software development

methodologies) or analytic (mathematical or logical relations),

The invariant principles are guideposts and constraints in the development of model systems. In

scionce, operationally useful models of r hysical systems are typically based on invariant principles.

N, wton's Laws are invariants for the mec.nics of the material bodies of the normal environment; the

fu idamental laws of quantum mechanic; -- the Heisenberg uncertainty principle and the DeBrolie

re'ation -- are invariants for microscopic I odies. An active science has two threads of activity at each

le'el of abstraction: one utilizes the inva -iant principles and their derived relations to study systems

dc fined within the level of abstraction, and another attempts to resolve one level of abstraction with its

uf per and lower neighbors. Psycholo(y is founded (loosely) on biology. Biology is based on

cltemistry. Chemistry is founded on Ihysics, while physics seeks to reso've understanding to

m ithematical or symbolic relations.

The development of the gas Paws in 1fth century chemistry and physics illus rates both threads of

di'ielopment. In 19th century gas laws, Boyle's Law, the volume of a gas is inversely proportional to

itL. pressure and Charles' Law, the volume is proportional to temperature, were entirely

pi enomenological. The development 0l Van der Waals' Equation which applies well to many real

gases over a variety of conditions was bar:ed on kinetic-molecular theory. Ouanium mechanics allows

di "ect computation of Van der Waals' co istants and indeed the precise virial equation of state. The

conversion of mass to energy, for anotl er example, occurs in many formats from solar fusion, to

fusion reactors to internal combustion engines. The models which can be used to compute the

energy output in each class of system are very different, but we can always be assured that the

invariant principle of E mc2 will not be violated. It must also be recogniied that the models of

2-6

science may vary enormously in resolution and detail. As an example, a model for the energy output

of the sun may predict only total energy output or may be composed of flux into a wavelength

spectrum and a kinetic energy spectrum for ejected particles on a local basis with respect to the sun's

surface. These are further examples of the fundamental principle of hierarchical structuring.

Similarly, models for software systems may legitimately be constructed to yield metrics at different

levels of abstraction.

Both of the threads of understanding -- relationships within the field and the relation of the field to

adjacent fields -- need to be pursued in the study of software: Software systems need to be

understood in terms of appropriate metrics for the top level of concept abstraction, but it is also

appropriate to try to map from programs to systems and from systems to programs.

3. The Practice of Science in the Context of Software Systems
We turn now to the application of this scientific paradigm to the analysis of software systems. This

section discusses the lack of scientific foundations and sketches a suitable paradigm. The following

section examines present practice in the field.

3.1. Lack of Scientific Basis

Software engineering has "leapfrog jed" over the traditional engineering 'science relationship.

Tiiis "leapfrogging" has a number of (onsequences. The first and most obvious is that software

engineering has been unable to pr..duce broadly effective operational procedures for the

development of large software system.; with predictable characteristics. TI is assessment is not

meant to decry or deride the enormous accomplishments of software engineei ing. On the contrary,

tI'ere are few human endeavors since tie pyramids where so much progress 'Ias been made in the

face of so much difficulty and with so few tools in so short a time. It is simply no: reasonable to expect

th3t a Given set of software engineerinri techniques can be extended beyond well-understood local

et vironments without a basic scientific understanding of the structures ar invariant principles

underlying the systems involved. We do not yet have effective dofinition3 of these underlying

structures and principles for software systems, nor have we identified the significant variables by

wiich software can be evaluated. Wit iout a clear characterization of what is to be produced, we

cannot hope to define an operationa! procedure for attaining the goal of prodt cing software systems

with desired characteristics. Another m.jor impact of "leapfrogging" to engin* ering practice without

a scientific basis Is the confusion and In ellectual disarray introduced into softw ire engineering by the

absence of basic scientific knowledge abOut the field. There has been a gre t deal of experimental

and theoretical work on the creation and evaluation of methodologies for softw3re development. This

body of work, although carried out by careful and qualified practiticners, often contains

2-7

inconsistencies, ambiguities and contradictions. We attribute these problems to the lack of the

unifying and integrating concept base which is developed through scientific principles of model

building.

There is not now a well-established set of rules or concepts for analyzing or evaluating the

properties of software systems. This is not to say that measurements of properties of programs and

systems cannot be made; the problem lies in the fact that the variables which can be measured

conveniently do not map readily upon properties or characteristics which are both quantifiable and

comparable across a broad spectrum of contexts. Only properties or variables which satisfy both of

the latter two requirements can be used reliably as metrics for evaluation of software systems. Since

there is not a uniform basis for evaluating the software products we develop, it is difficult to make

meaningful evaluations or comparisons of the methodologies used to produce these products. There

is an excellent chance that the software measurements now being taken are not fundamental and that

(even quantitaive) descriptions of software do not refer to primitive and comparable concepts. There

is an excellent chance that the relationships now observed and inferred in empirical models do not

reoresent the actions of well-understood or fundamental mechanisms. In the absence of system-level

mritric properties or variables it i3 often the case that immediate metrics, which may be properties of

languages or programming styles, are regarded as ends in themselves rather than pieces in the larger

puzzle of a software system.

A given methodology may lead to software properties that are predictable by some metrics, but

th,:se metrics may not be relevant to pioducts developed by other and comreting methodologies.

TI next section discusses the traditional practice of the science in the context of software

dcvjelopment and software evaluation problems. It is our contention that metrics for the evaluation of

so'tware can be developed only in the context of a scientific approach to the analysis of software.

3.2. Abstraction and Structure

Having argued that abstractions an i models are essential, we now ned to consider what

ccnstitutes a good abstraction or model. In the physical sciences the "Occam's Razor" principle has

long been accepted as a criterion for choosing between competing models. In effect, Occam's Razor

says "Pick the simplest model that adequately describes a phenomenon." The imphasis on simplicity

is important, for the whole rationale for modeling is to accommodate our limhations in dealing with

ccmplexity. This is consistent with our use of simplicity as a criterion frr good programming

at stractions; In software design, too, we choose abstractions or models that a, e both simple (easy to

ur derstand) and yet adequate to describe the desired program behavior.

The classic Bohr atom is an excellent example of a simple model. There are only two kinds of

parts: the nucleus and its orbiting electrons. Both parts can be characterized in terms of their weight

2-8

and charge, and the relation between them is characterized in terms of the simple laws governing

orbital motion.

The notions of models and abstraction play a central role in software design, but the situation is

somewhat different from the situation in the classical sciences. For the chemist and physicist, reality

is fixed, given by the physical systems they study; they propose models to describe and predict reality.

For them, the degree to which a model is successful can be tested by performing experiments and

comparing the results to predictions from the model. The software engineer, on the other hand, is

building an artificial reality. He can also use abstractions to control complexity, but he has the ability,

in principle, to make these models exact by changing the reality they model. That is, he can (in

principle) make the program perform at some level of abstraction exactly as predicted by the modcl

under all circumstances. Thus, in a sense, the notions of modeling and abstraction are v.'., more

puwerful in programming than in the physical sciences. Still, in practice the absiract descriptions

used in program specification are almost always, to some extent, incomple;. , just as they are in the

physical sciences; for example, we seldom specify the exact running times of our programs.

Further, as the physical systems of cl emistry and physics illustrate a hierarchy of models, each

more detailed than the last, so is a similar hierarchical structure applicable to programming. An entire

pr.)gram is usually too complex to compri hend, so we describe it in terms of an abstract model. That

m xlel is defined in terms that, in turn, mt st be implemented with fairly complex programs. Generally

w#! need to explain each of these subproE rams in terms of still more detailed models. Thus, in a large

prijgram you should expect to find many evels of abstraction. Only in this way we can hope to avoid

ar explosion in complexity.

The illusion of malleability implied by tWis ability to, in principle, precisely control system behavior

leaids to problems in the development ind maintenance of software. It also affects our present

cc ncern with measurement: The very mall3ability of the medium allows different nodels to be used for

th e development or analysis of very sim lar systems, and it allows the structu e of programs to be

changed by human design -- unlike physical systems, which are strongly constr, tined by natural laws.

Tl,- implication of this lack of constraint on system organization is that any natural laws that operate

m ist operate at a low level. Solid understanding of these primitive relations will be crucial to

m)delling large systems. In addition, tf e software metrician can re-emphasi:.e the observation of

mny software builde.rs that the illusion -f malleability is misleading. Rigid rules governing system

or ganization may well lead to more tractaile systems.

3.3. Models for Softwaro

A structural model explains a system in terms of component parts and presumed relations among

those component parts. In the programming domain, the "parts" we deal with are data objects and

2-9

portions of programs. The relations between them are such things as how control and data values

flow from one part of a program to another, what kinds of assumptions each portion of a program

makes about its execution environment, and the ways the humans working with the program are

organized. As scientists, engineers, and programmers, we strive to make both the individual parts

and the relationships between them as simple -- as good -- as possible.

For example, if our overall objective is to measure "program quality", we might decide to

characterize quality as a composite of a number of other, more specific, properties such as

correctness, efficiency, maintainability, completeness, cost of development, quality of documentation,

and so on. This reduces the problem of measuring quality to the subproblems of measuring the

individual characteristics and of combining those results into an overall quality measure. We can

address each of the subproblems in the same way -- we might, for example, work from a conceptual

model that suggests maintainability depends on program structure, readability, size, number of

authors, age, and so on. This generates yet another set of subproblems that could be addressed in

the same way. Interestingly, some of these individual characteristics may reasonably be expected to

contribute to the measurement of some of the properties of the original set: readability may also be a

factor in cost of development and quality of documentation, program structure may also affect

correctness and efficiency, size may v'1.o affect correctness and cost of development, etc. We

speculate that a good structural moJel for program quality may in addition lead to better

understanding of the factors that affec. quality in programs. Severe problerrs are associated with

making measurements such as these in such a way that they are valid across computers,

programming languages, and even hur ian organizations. The invariant relalions that can help to

normalize measurements across such di ferences have not yet been identified.

"Structure" is often cited as a "good" property or an indicator of the quality)f a program. Several

m-iasures for program structure have bnen proposed. These include syntactic measures [6, 7, 12],

c(unts of modules and modular connections in a program [1, 6], various properties of the graph of

th , programs control flow [10, 11], ant the amount of information shared amcg modules [4]. Each

pioposal for a metric is supported by one or more tests or algorithms for collecting data to evaluate

the metric. It would be remarkable if ill these tests were measuring the same characteristic of a

program; we have not yet seen ade luate work on validating these proposed metrics, either

individually or collectively. Although thEse studies do not view measures of stricture as components

of a more global metric methodology, we can imagine using them in that waf. In order to accept

"tructure" as a measurable property, we must ask both about the pertinence o the proposed nretrics

to the property we call structure and about the accuracy with which the tests measure those metrics.

We must also considor whether it is economically feasible to gather the data in practice.

) Indeed, a given property may be measurable in more than one way. Certain aspects of operating

2-10

system performance are often measured by modelling the operating system as a simple single-server

queueing system, and estimating the parameters of the model on the basis of empirical measurements

(9]. To accept the results of such an analysis, we must consider both the degree to which the model

represents the actual system and the accuracy with which the parameters are estimated. Operating

system performance is also measured with benchmark tests [5]. A user of these tests must consider

whether the jobs in the benchmark set correctly model the intended usage of the system and whether

enough (and accurate enough) data is collected. Further, to the extent that queueing models and

benchmarks are used to measure the same properties, we must be able to discuss how well they

actually do so.

4. The Current Status of Experimental Science in Software Evaluation
Two aspects of the general methodology of science are missing from software metrics as currently

practiced. These are the use of a hierarchy of models and the iterative cycle of hypothesis formation

and validation.

The current cycle for experimental studies which should be establishing the foundation of a

science of software evaluation is mostly conducted as shown in Figure 2.

Some quantifiable abstract property -- metric -- is selected for study (understandability, complexity,

et :.). Some set of directly measurable quantities -- number of statements, riproducibility of code,

et,:. - are selected. A model which relates the measurements to the metrics is assumed. The model

is normally frankly phenomenological. The mea3urables are used in the model to generate values for

th . m-Nric properties. These values are :hen commonly analyzed in an externz' context or correlated

wi h other experiments. Sometimes the variables of the model are adjustd from analysis and

correlation and new values of metric properties generated.

The well-known studies of program strJcture of McCabe [10] are an example. McCabe's work aims

at establishing a property of programs which he labels complexity. Comr lexity is not given an

abstract meaning or scale nor related t0 other properties at a similar level of abstraction. Rather,

complexity is postulated to be a function of the program's control flow structure.

If this process is compared to the traditional processes of science it is quickly seen that an

in portant step has been left out; the development of invariant principles fior observations and

experimonts. Programs unfortunately lack characteristics that can readily be cuantified or expressed

or a linear numerical scale. For example, control structures are not entirely comparable across

ptogramming languages even when extracted to graph structures. There Is no intrinsic quantification

of program complexity; it is regarded as a derived quantity.

2-11

metric selection

measureable property
selection

model definition

measurements

metric correlations

Figure 2. Current Pra-tice for Experimental Software Science.

A second shortcoming of current softv are practice is the lack of attention to hierarchical structure

in metrics. The paradigm of science su.jgcsts a search for invariant re!altion, involving complexity

ar d attempts to quantify complexity in ab -olute terms or to relate it to other properties at similar levels

of abstraction. Such relations could ther. be used to calibrate models with intermediate, perhaps not

c mparable, v3riables. The absence of a foundation of first principles renders the model entirely

et ipirical. Such a model may have predt ;tive value in a given situation, but it is not likely to contain

ei ouOh structural information to be extendable to other situations. It will te very surprising for

ctherence and consistency to develop in experimental studies of software deve opment until the field

develops some basis of irvariant princip:es. It is not necessary that the invari;,nt principles be rigid

mathematical structures; they may be e:cpected to be statistically probabilistk. for those aspects of

s(ftware system evaluation which involve human judgment or human usage.

Models for productivity have often be';n developed purely empirically. For example, Walston and

F(lix [13] develop equations for several a 3pects of programmer productivity based on the assumption

that equations of the form

2-12

EFFORT = a * SIZEb

adequately model the situation. Based on empirical data, they obtain equations for a number of

characteristics of productivity, including

E = 5.2 L0 -91

D = 49 L1 "0 1

where E = effort in man-months
L = thousands of lines of delivered code
D = pages of documentation

In discussing the first equation, they remark that it is nearly linear, but they do not hypothesize a

structural explanation and they do not attempt to revise the model to express effort as a linear

function of code size with second-order effects. In another paper in this report, Basili describes an

attempt to apply the Walston-Felix model in a different environment. He finds that historical data for

the second environment yields equations including

E = 1.41LO
9 4

D = 29.5 L '92

These are again close to linear, but again the linearity is noted but not incorporated in the model.

Basili also notes that Lawrence and Jeffery [8] have successfully used a linear model. These models

for productivity serve an immediate role in providing predictive information for cost planning of

current development projects. Howeve they do not serve to illuminate the bas;c causal relations that

underly the model.

The work of Walters and McCall [14] on the development of metrics for software reliability and

maintainability is an example of care;,ol and thorough analysis which pro'eeds by the entirely

phenomenological model represented ir Figure 2. They, in fact, go beyond typi.-al current practice by

including a hierarchically structured model. They postulate that reliability aid maintainability are

functions of other more resolved coiicepts of programs, modules and s,stems. Reliability is

postulated as deriving from error tolerance, consistency, accuracy and simpfi.,ity. Maintainability is

st id to derive from consistency, simplicity, conciseness, modularity and self d .,scriptiveness. These

a sumed metric properties of modules ad systems are in most cases evaluate I for each module and

fcr the entire system. Values for a top level metric such as maintainability are derived from

independent measurements. Linear nigression fits between the metrics at the top level and the

module system metrics are assumed and coefficients determined by regression analysis. This paper

found significant correlation between values of top level metrics and the val jes of module/system

metrics such as effectiveness of comments, complexity, etc. This work is thorn ,ugh and professional.

It is, however, deficient with respect to he traditional practice of science in two regards. The model

structure is assumed. There Is no effort to determine other than linear relation -hips between metrics

or model parameters. There is no attempt to look beyond correlations for invariant principles or to
determine further model structures. It is these latter two aspects which we feel must be added to

(.j

2-13

observation/correlation in order to lay a scientific basis for software evaluation metrics.

The absence of a basis of invariance principles not only hinders the formation of coherent models

or relations between the variables of a system, it also hinders the specification of measurement. The

invariant principles are relations between fundamental quantities. It is often difficult to discern what

properties are fundamental in the absence of the guidelines given by invariant principles. It is thus

difficult for current experimental work to pose questions (hypotheses) in such a way that after the

experiment it can be told whether or not the questions have been answered (tested). The situation is

that persons doing experiments in software evaluation are faced with the circumstances of not having

the basis for understanding what it is that they are supposed to be studying while trying to design and

execute the experiments giving values for these quantities. They face the ultimate problems of

experimentation -- to demonstrate cause-and-effect relationships without having firmly based

definitions of what is to be a cause and what effect is to be measured.

There are currently two main threads of experimental work. One is the direct analysis of software

systems' measureable properties and properties presumed to be fundamental. Another is concerned

with the evaluation of methodologies for software development in terms of the application of the

methodology producing predictable values for assumed metric properties. These two streams of work

ncw tend to use different metrics and to do generally incompatible experiments A strong effort needs

to be made to merge these two paths if true experimentation which implies o.)erational control, the

at ility to generate cause and effect relationships in experiments, is to be developed. The

dc velopment methodologies need sound definition of metrics and structural mc,dels for a sound base

wlile experiments in software science must of necessity be constructive in natu-e.

The validation of models in this situction poses substantial difficulties. In the current structure,

vefidation consists of showing that the given structure in a given set of vari;tble values allows the

model to map input to output in at least one case. This is a powerful validatiot procedure only if the

m)del can also be validated to conform to invariant principles which are know i to be valid for a wide

spectrum of system descriptions and if the model can be shown to generally conform to invariant

structures.

The concept of successive refinement is not often invoked in current experiments in software

evaluation. Rather, the intermediate metrics are often regarded as an end in thi. mselves.

Response time analysis of computer systems provides an example of 3 software evaluation

er.eriment which conforms to a tradiional paradigm for scientific analysis. Response can be

maasured as functional of transaction resource usage characteristics. A queueing network model

representation of an interactive computer system might be as in Figure 3. taken from [2). Response

time is modeled on the time elapsed between a job leaving the TERM queue and rejoining the TERM

2-14

TERM

CPU DS

Figure 2. Queueing Network Model.

qt crue. The disk system is actually a two phase process, positioning and transfer. Additionally, each

di.;k sub-system probably consists of s veral drives on a single controller. Therefore each DISK

qt eue is really a composite structure sucn as Figure 4. The service time for POSITION is is normally a

fu iction of workload level. Measurement are made on each phase of the disk service and the model

pr rameterized as a function of workload The Chandy-Harzog-Woo (CHW) theorem [3] i. then used

to determine an equivalent single queue 'o represent DISK in Figure 3. Figure 3 is then collapsed to

Fi-urp 5 by the CHW theorem and resp onse time becomes the service time ")f the queue labelled

S"STEM. The model relationships are datermined by the structure of the several queueing network

n'odels and the parameters are taken dir(ctly from observations and invariant pr nciples.

5. Steps Toward a Scientific Basis for Software Evaluation
The comparison of the successful development pattern for the sciences with the current ad hoc

practice in software evaluation suggest, directions for both long term and short term research and

d(volopment. The current empirical ar d experimental work is vital. It should be enhanced and

e..tended by applying the general princip,3s of traditional science.

1. Invariance Principles - The absence of invariance principles is the most serious lack in
software evaluation. Invariance principles are seldom created. Rather they are
synthesized from observation and irom transfer of knowledge coupled with insight and a

(.) knowledge of the systems being studied. Thus analysis of observed properties of

.. r -,-,-,-...

2-15

POSITION TRANSFER

Figure 4. Disk System Model.

. . TERM

- > SYSTEM

Fig ire 3. Collapsed System.

sofL .-are is not wasted effort. It is almost surely a prerequisite for eventL al generation of
invariance principles. Much mort, emphasis needs to be placed on attEmpts to identify
abstract invariance principles from observations rather than the curra=nt attempts to
create entirely empirical context d:ven models.

2. Successive Refinements - The concept of hierarchical structuring of metrics and models
needs to become a part of the experimental practice of software evaluation. The attempts
to lep the vast conceptual distE nce from concepts such as maintainability directly to

properties cf programs written in the specific languages is unlikely to produce success.
Experiments and models need to be constructed which attempt to define and evaluate
such programs or system concept!; such as maintainability, etc.

3. Model Validation - Model validatiun must be recognized as a principal I roblem. Efforts
need to be made to test models against even assumed invariance rinciples. The
definition of the context of a validation and the precision of definition of the metrics and
the variahles in the model need to be an integral part of every experimental study.
Pienomenological ,nd empirical models need to be analyzed for possible content of and
effect of invariant principles. The principle of successive refinement is important with

- ti f :... . I im illI II " - i

2-16

respect to the validation problem. The decomposition of the concept goals into
intermediate metrics leads to the possible establishment of intermediate levels of
validation which may be soundly based and perhaps well understood.

4. Introspection - We must iterate over our models to make them better descriptions of the
systems they model. This is different from creating a hierarchy of successively more
precise models - it is rather a requirement for better accuracy at each level of precision.

There is a strong need for experimental work based upon these traditional principles of science. A

few such experiments, if successful, could lead to fundamental new directions for software system

evaluation and software engineering. Although purely predictive models will be useful, and they may
yield higher cost returns in the short run, structural models provide a means for understanding the

fundamental mechanisms at work in a system and for basing new models on existing sub-models. As

a result, structural models offer substantial economic benefits in the long term. We recommend that

investigations of techniques for developing, evaluating, and using structural models be supported as

basic research. For the next few years, this must include support for the development of models for

specific kinds of systems to serve as test beds and concrete examples of good practice.

6. References

[11 L. A. Belacdy and C. J. Evangelisti.
System Partitioning and its Measure.
Technical Report RC 7560 (# 32643), IBM T. J. Watson Research Center, March, 1979.

[21 J.C. Browne, K.M. Chandy, R.M.Prown, TW. Keller. D.F. Towsley, and C.W. Dissly.
Hierarchical Techniques for the Development of Realistic Models of Complex Computer

Systems.
Proceedings of the IEEE 63:966-977, 1975.

["1 K.M. Chandy, U. Herzog, and L. Woo.
Parametric Analysis of Queuing t"etworks.
IBM Journal of Research and Development 19:36-42,1975.

[4J Robert N. Chanon.
On a Measure of Program Structi-re.
Technical Report, Carnegie-Mellon University, 1973.

[5] Dennis M. Conti.
Findings of the Standard Benchmark Library Study Group.Technical Report 500-38, National Bureau of Standards Special Publicction, January, 1979.

[61 Tom Gilb.
Software Metrics. 4
Winthrop, 1977.

[7] Maurice H. Halstead.
Operating and Programming Systems: Elements of Soltivare Science.
Elsevier Computer Scionce Library, 1977.

2-17

[8] D. R. Jeffery and M. J. Lawrence.
An Inter-Organizational Comparison of Programming Productivity.
Technical Report, University of New South Wales, Department of Information Systems, ??.

[9] L. Kleinrock.
Queuing Systems, Volume If: Applications.
John Wiley & Sons, 1975.

(10] Thomas J. McCabe.
A Complexity Measure.
IEEE Transactions on Software Engineering SE-2(4), December, 1976.

(11] Barbara G. Ryder.
Constructing a Call Graph of a Program.
IEEE Transactions on Software Engineering SE-5(3):216-226, May, 1979.

[12] T. A. Thayer, et al.
Soflware Reliabi!ity Study.
Technical Report RADC-TR-76-238, Rome Air Development Center, August, 1976.

[13] C. E. Walston and C. P. Felix.
A Method of Programming Measurement and Estimation.
IBM Systems Journal 16(1), 1977.

[14] Gene F. Walters and James A. McCall.
The Development of Metrics for S ftware Reliability and Maintainability.
In Proceedings of the 19 78 Reliab lily and Maintainability Symposium. 1978.

(~)

DRAFT VERSION 3-1

Design of Software Experiments

Frederick G. Sayward

Department of Computer Science
Yale University

New Haven, Connecticut

June 1980

I. Introduction

In this paper the current practices used in conducting experiments

aimed at understanding and improving software development, testing, and

maintenance will be summarized and critiqued. To date the designs used

in software experiments have followed the traditional approach in which

subjects are randomly drawn from a population and then randomly assigned

to two or more groups. The effect of the hypothesized improvement factor

is then evaluated by comparing the mean intergroup change observed on

some measured factor. In addition to the problems of internally

validating current software experiments, external validation problems

have led to little wide spread acceptance of their conclusions. The

chief research directing recommendation given is that a relatively new

and still controversial experimental design, called single subject

research 116], should be explored as a possible cost-effective approach

to the external validation problems of current software experiments.

In the next section the principles and terminology of experiments

will be reviewed. A summary and analysis of the methods and conclusions

of software experiments found in the literature is given in section 3.

In section 4 the principles and problems of single subject experiments

(.) are given along with an indication of how this design type might be

i]

3-2

applied in software experiments. Suggested research directions are

presented in the final section.

II. Experimental Principles and Terminology

Experiments of the type conducted for understanding and improving

software usually start with an identification of three types of

variables: independent, dependent, and uncontrolled. The independent

variable is the hypothesised improvement factor (treatment). An example

of an independent variable is using or not using structured programming

techniques during program development. A dependent variable is some

measurable factor (response) which is a function of the independent

variable. For example, the cost of program development. Uncontrolled

variables are any other factors (sources of variance) which influence the

dependent variable. For example, years of programming experience,

programming language, and program size.

Hypotheses are usually stated in terms of these variables. For

example, "structured programming reduces the cost of program development"

and "the cost of developing 500 line FORTRAN programs is reduced by a

factor of 3 when structured programming is used." Clearly, the more

general the hypothesis the more effort required to design a valid

experiment.

The next aspect is choosing a design type. The most popular choice

in software experiments is the many subject random group design which has

evolved over the past hundred years from work initially done in

agricultural experiments. After random selection, the subjects are

randomly split into groups. Both uses of randomization are critical in

3-3

accounting for the dependent variable measurement variance introduced by

some of the uncontrolled variables. Also, groups are assigned instances

of the independent variable for the duration of the experiment.

After subject selection and assignment, the material of the

experiment must be determined. For software, this is usually the

programming tasks to be done. Depending on the hypothesis, randomization

may again be used to dampen variance.

The next decision is in the measurement technique used to monitor

the dependent variable. For example, it may be too difficult under

experimental conditions to measure cost in dollars. But if one makes the

inference that time is money, then one is justified in measuring time.

In the many subject random group experiment measurements on the

dependent variable are (effectively) taken only once, that being at the

conclusion of the experiment. A single measurement is also in the

agricultural tradition where crop yield is the critical data. This point

should not be taken lightly since a large body of statistical inference

tests have evolved for analyzing this single (in time) data point. These

tests form the analytic tools which have been used to analyze the data

collected in software experiments in determining whether the hypothesis

should be accepted or rejected.

The final, and probably most important aspect, concerns experiment

validity. There are two forms of validity; internal and external.

Internal validity is the degree of certainty that changes in the

independent variable account for observed changes in the dependent

variable. That is, all uncontrolled variables have been ruled out as

contributors to the measurements taken on the dependent variable.

3-4

External validity is the extent to which the results of the experiment

can be generalized to different subjects, materials, statistical tests,

and experiments. In general, do the experimental results scale to the

entire population? Internal validity is a minimum prerequisite for

conducting an experiment since without it the results of an experiment

are uninterpretable. For many subject random group experiments, there

are several replication methods which have been used in the design of

software experiments, such as factorization and Latin squares, aimed at

ensuring internal validity.

III. State of the Art in Software Experiments

As stated above, the design of software experiments has followed the

traditional many subject group orientation. The independent variables

under investigation have fallen mainly into the following five

categories: programming language constructs, programming methodologies,

program complexity measures, types of debugging tasks, and programmer

experience. The dependent variables have fallen mainly into the

following four categories: time and accuracy of program development,

understanding of existing programs, number of detected errors, and time

and accuracy of modifications to existing programs. Depending on the

study, some of the above factors are taken to be uncontrolled variables.

It is noted that there is a surprising lack of using commonly used

programming languages as an independent variable. Programming language

usually is a fixed parameter in software experiments.

(()

3-5

The number of papers on software experiments has grown rapidly in

the past few years indicating interest both in the computer science

research and in the practitioner camps. What follows is a brief summary

of the software experiments literature examined by the author, presented

more or less in chronological order. Unless otherwise stated, each

experiment used some form of many subject random group design.

Sackman, Erikson, and Grant [201 found that on-line debugging took

less time than off-line debugging with no significant increase in CPU

time.

Sime, Green, and Guest [281 found that the IF THEN ELSE type of

conditional statement is superior to the IF THEN GOTO in terms of

programming time and number of errors made.

Gould and Drongowski [14] found up to a factor of five difference in

the time required to detect different types of bugs, and found up to a

factor of four difference in the number of bugs detected by experienced

programmers having equivalent backgrounds.

Weinberg and Schulman [30] found that programmers construct quite

different software to satisfy the same objectives of fast programming,

efficient programs, minimal program size, and program readabilty.

Youngs [32) found that experienced programmers use different

debugging strategies than those used by beginning programmers.

Weissman [311 found that commenting and paragraphing made programs

easier to understand but more difficult to modify while good variable

naming helped both program understanding and modification.

(.

3-6

Gould [13] gave examples of debugging tasks and program

modifications which require little to no understanding of the programs

under consideration.

Shneiderman (21] found that using FORTRAN logical IFs rather than

arithmetic IFs made small programs easier to understand for novice

programmers.

Gannon (10] found that strong data typing in programming languages

has positive effect over no data typing respect to making fewer errors

and taking fewer runs in arriving at the final program.

Green [15] found that professional programmers were better able to

answer difficult questions about programs written in a language which

used an IF THEN ELSE having redundant predicate information rather than

the standard IF THEN ELSE.

Shneiderman [22] found that even a few months difference in

experience for intermediate level programmers can have a significant

effect on performance and he also advocated the use of memorization and

recall as a basis of measuring program understanding.

Shneiderman, Mayer, McKay, and Heller [241 found that flowcharts are

redundant and have a potential negative affect on coding, comprehension,

debugging, and modification.

Sine, Arblaster, and Guest (261 found that tools for helping format

conditional statements reduced the initial program error content but

didn't help in locating the error initially present.

3-7

Sime, Green, and Guest (29] found that the IF THEN ELSE type of

conditional statement is superior to the IF THEN GOTO in terms of

programming time and number of errors made.

Brooks [3] found that dictionaries of program variables are superior

to macro flowcharts as an aid to understand program control and data

structures.

Chrysler [5], using no controlled groups, found that for COBOL

programs the occurrence counts of output fields, input files, control

breaks and totals, input edits, output records, input fields, and input

records were the most significant predictors of development time and that

programmer age and years of formal education were the most significant

predictors of development time.

Myers (18], in comparing different debugging methods, found that

surprisingly few errors (34Z) were caught, there were significant

differences in the error types caught by group, and that code walkthrough

was more costly than other methods but didn't give better performance.

Basili and Reiter [1] found that three man teams, in building a

simple compiler, which were required to use modern programming methods

required less effort than uncontrolled teams or individuals.

Curtis, Sheppard, Milliman, Borst, and Love (7], in comparing

Halstead's effort metric, McCabe's cyclomatic number metric, and the

number of executable statements to programmer performance on two

maintenance tasks, found there was little to choose in the three metrics

with respect to time and accuracy of maintenance.

3-8

Curtis, Sheppard, and Milliman [61 in a replication of [7] using

larger multimodular programs and a wider variety of subjects found that

Halstead's effort metric was better than lines of code by a factor of two

for predicting debugging effort.

Dunsmore and Gannon 18] found that average variables referenced per

statement and average live variables per statement had a simplifying

effect on program development and program maintenance.

Shneiderman and Mayer (23] found planned modularization rather than

no or random modularization aided in the comprehension of programs.

Schneidewind and Hoffmann [25] found that the rates for making

programming errors, detecting programming errors, and correcting

programming errors are all dependent on structural program complexity.

Sheppard, Curtis, Milliman, and Love [26] found that one could use

the number of languages known and the familiarity with FORTRAN concepts

to predict comprehension, modification, and debugging performances for

programmers having three or less years of FORTRAN experience, but not for

programmers having more FORTRAN experience.

Dunsmore and Gannon [9], in investigating the effect program

nesting, percentage of global variables, ratio of parameters to global

variables, average variables referenced, and average live variables have

on the effort required for program construction, comprehension, and

modification, found that effort related to all five parameters, and that

modification is easier when the ratio of formal parameters to global

variable is high and when the average live variables per statement is

low.

3-9

Rarely in the above software experiments have hypotheses been

formally stated at the outset. Rather, the paradigm is an informal

introduction to the factors under consideration, the experiment design,

the data collected, the application of statistical inference tools, and

conclusions. The reported internal validity considerations are rarely

satisfactory. Each paper usually ends with a note that the findings

suggest that further investigation should be done, indicating that even

the authors have little faith, as yet, in the external validity of their

software experiments.

In [4], Brooks gives a detailed account of some internal validity

flaws found in current software experiments. He cites several examples

of subject and material selection, summarized below, which make many

experiments suspect. With respect to measurement selection, he states

that new measures of the effort required for program construction and

program understanding based on cognitive models of program-programmer

interaction are needed.

Brooks' criticism of subject selection is based on the methods used

to circumvent the problems of cost, non-availability and wide ability

differences of using experienced professional programmers. Most software

experiments have used beginning or intermediate level student programmers

as subjects. There is little proof of the necessary internal validation

issue that experienced programmers use at a faster rate the same problem

solving procedures as do beginners. Also; guaranteeing that groups of

begining programmers have equal ability is not trivial.

3-10

The problem with material selection is not so much internal as

external. For internal validity, the programming tasks selected must be

comparable across the uncontrolled variables. Program complexity

measures have been somewhat helpful in this respect. Factorization

designs can also be used.

For external validity, Brooks states that the programs used in

software experiments are not representative of the programs being

developed in the real world because of their small size. Since it is

universally accepted that developing a large system is not just a matter

of scaling up from developing a small system, small scale material will

be a potential source of external invalidity until an accepted model of

the effects of program size is developed.

Brooks states that all of the experiments done to date need to be

replicated on larger programs before any generality of their results can

be accepted. Although not stated, presumably experienced professional

programmers would also have to be used in attempting to generalize the

current software experiments by replicating them on large scale software.

It is the opinion of this author that Brooks' suggestion is not only

economically infeasible but also premature. In the next section a more

economical but equally risky alternative suggestion will be made which is

based on the following question:

Given that the software life cycle is so dynamic over
time, should we be content in our software experiments to
draw conclusions based on a single ex post facto
measurement?

3-11

IV. Single Subject Research

The major difference between the orthodox many subject experiment

and the single subject experiment is that in the latter approach the

dependent variable is measured throughout the experiment to yield a

time-series of observations. In their design, time is broken into phases

during which different instances of the independent variable are applied

(called interventions). Conclusions are then drawn from observed

interphase changes in the dependent variable.

There are four basic types of single subject experiments: one

individual, two or more groups of one individual, one (small) group of

subjects, two or more (small) groups of subjects. Hence, single subject

is really a misnomer. Within each type of experiment there is further

diversity in the number and order of interventions. However, in all

designs the emphasis is on a time-series of measurements.

As usual, the design problems are in internal and external validity.

It is more difficult to resolve the internal issue for single subject

than for many subject experiments. Several recommendations on validity

are given in [16] and some will be summarized below.

For now, some of the validity problems will be illustrated by

considering a hypothetical single subject experiment on the hypothesis

"structured programming reduces the cost of program development." The

single subject design will be of the operant or ABAB type which is used

for one individual or one small group. For illustration purposes, let us

assume we have a perfect definition of structured programming and a

perfect measure of program development cost which can be applied in an

) unbiased fashion at any point in time.

• 1 1I II1l l l ...- -.... .. .

3-12

In the ABAB design the time axis is-broken into four phases whose

sequence and terminology are illustrated in figure one.

A B A B
S---- ---------------------- > time

baseline intervention withdrawal intervention
(return to baseline}

Figure One: The ABAB single subject design.

During baseline and withdrawal the single subject does not use structured

programming techniques, while in the other two phases structured

programming is employed. Suppose that the subject is writting a large

system in some language and periodically the cost measure is applied to

arrive at the raw data which is graphically presented in figure two.

cost

I0 6

- -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - > time

baseline intervention withdrawal intervention

Figure Two: Hypothetical raw data.

As will become evident, graphical "presentation plays a central role

In interpreting the data of single subject experiments. In [191 several

methods of constructing line graphs, bar graphs, and cumulative graphs

from the raw time-sieries data of a single subject experiment are given.

3-13

Also, useful graph transformations are given. It is explained how the

various graphical forms can be used as an aid in analyzing several

experiment validity questions.

Two important graphs are illustrated in figures three and four: a

bar graph of the phase means and a within phases least-squares fitted

trend line.

cost

baseline int ervent ion withd rawal int erenti1on

Figure Three: Bar graph of phase means.

cost

II I 1
II I I
I I I •I

I. I I oI. * *. .

I II
II I I

-~-- --------- - -- -- -- -- - --- -- - - - - ----- time

baseline intervention withdrawal intervention

Figure Four: Least-square fitted trend ines.

3-14

Figure three indicates a necessary for internal validity equal levels of

better performance by the subject when structured programming is used.

However, since the subject performed better under withdrawal than at

baseline, the is a threat to internal validity due to learning. This is

compounded in view of the decreasing baseline trend line illustrated in

figure four. Thus, there is a major threat to validity due to an

unstable baseline. A prerequisite in single subject experiments is the

establishment of stability in the baseline. Although not illustrated,

variance in the phase data must also be considered.

In [17] Kratochwill gives a summary of several validity issues which

must be dealt with in single subject research. The threats to internal

and external validity for single subject experiments are more or less the

same threats present in many subject experiments. But the problems in

dealing with the threats are more acute due to two facts: single subject

experiments usually take more time to conduct and thus there is greater

chance that a threat causing event will occur; and since there are fewer

subjects, subject programs such as learning or drop out have greater

negative impact on validity. In general, more attention must be paid to

validity in single subject experiments since the design is less adequate

for dealing with the influences of the uncontrolled variables.

On the positive side, the problem of representative material is

somewhat easier. Also there are two emerging formal methods are given

for data evaluation: graphical techniques (19] and statistical inference

techniques [11,12]. In the latter area it has been shown how time-series

analysis and Markov chains can be used as significance tests for baseline

stationarity, interphase changes in level, and autocorrelation in the

collected data.

Ao

3-15

V. Recommended Research Directions

The chief research directing recommendation of this paper is that

computer scientists engaged in software experiments should seriously

consider using single subject designs in their subsequent experiments.

Unlike the agricultural tradition of many subject designs, single subject

designs have evolved from an educational psychology and therapeutic

tradition. In these fields the difficulties of replication and the

ethics of non-treatment led to a search for alternative designs. While

the latter point doesn't appear to be a problem in computer science, the

former certainly is.

A major potential advantage of single subject research to software

experiments lies in retesting hypotheses which have been positively

affirmed in past experiments. As stated above, these affirmations are

often suspect due to the small scale material used and the selection of

inexperienced subjects. Added strength can be gained through single

subject experiments using larger scale material and more experienced

subjects. Although these same goals could be accomplished by scaled-up

replication of past experiments, as suggested by Brooks [4], it is not

felt that there is adequate justification for the staggering costs this

would entail at the present time. Also, some of the threats to internal

validity would still be present in the replications since there is, as

yet, many deficiencies in our knowledge of programmer-programming task

interactions. In summary, single subject design offers a cost-effective

opportunity do to larger scale software experiments now.

3-16

From a philosophical view, the single subject approach is more

appealing to this author because of its data collection over time

mandate. Given that the software life cycle is very dynamic, it is

difficult to accept hypotheses on the basis of data collected at a single

point in time. Even if the validity issues of single subject software

experiments prove too difficult to overcome, there is a good chance that

conducting such experiments will lead to new insights on how to integrate

the time variable into traditional software experiments.

Lastly, in addition to supporting the new single subject approach,

it is recommended that small scale many subject software experiments

receive continued support. These experiments will continue to lead to

interesting new hypotheses, a sharpening of subject, material, and

measurement selection techniques, and a quick inexpensive rejection of

false hypotheses. Integrating the recommendations, one can foresee the

future possibility of hypotheses passing through a hierarchy of well

planned software experiments: small scale single subject, small scale

many subject, intermediate scale single subject, intermediate scale many

subject,

Acknowledgment

I would like to thank Richard Lipton for making me aware of single

subject research and for introducing me to an invaluable reference 117).

References

(11 V.asli and LR.elter, "An Inveastigation of Human Factors in
Software Development", Couputer 12.12, Dec. 1979, pp. 21-38.

(2) S.Bole and J.Gouldo "Syntaclt 9 Eors in Computer Programing",
Human Factors 16, 74, pp. Z1-27.

3-17

13] R.Brooks, "Using a Behavioral Theory of Program Comprehension in

Software Engineering", Proc. 3rd Internat. Conf. Software E.s.,
IEEE, New York, 1978. pp. 196-201.

[4] R.Brooks, "Studying Programmer Behavior Experimentally: The Problems
of Proper Methodology". Comm.of the ACM 23,4 (Apr. 1980),
pp. 207-213.

(5] E.Chrysler, "Some Basis Determinants of Computer Programming
Productivity", Comm.of the ACM 21.6 (June 1978), pp. 472-483.

(6] B.Curtis, S.Sheppard, and P.Milliman, "Third Time Charm: Stronger
Prediction of Programmer Performance by Software Complexity
Metrics", Proc. 4th Internat. Conf. Software Eng., IEEE, New York,
1979, pp. 356-360.

[7] B.Curtis, S.Sheppard, P.Milliman, M.Borst, and T.Love, "Measuring
the Psychological Complexity of Software Maintenance Tasks with the
Halstead and McCabe Metrics", IEEE Transactions on Software
Engineering SE-5, March 1979, pp. 96-104.

[8] H.Dunsmore and J.Gannon, "Data Referencing: An Empirical
Investigation", Computer 1212, Dec. 1979, pp. 50-59.

[9] H.Dunsmore and J.Gannon, "Analysis of the Effects of Programming
Factors on Programming Effort", The Journal of Systems and Software
1, 141-153 (1980).

[10] J.Gannon. "An Experimental Evaluation of Data Type Conventions",
Comm.of the ACM 20,8 (Aug.1977), pp. 584-595.

[11] J.Gottman and G.Class, "Analysis of Interrupted Time-Series
Experiments", in T.Kratochwill (Editor), Single Subject
Research: Strategies for Evaluating Change, Academic Press, New
York, 1978, pp. 197-235.

(12] J.Gottman and C.Notarius, "Sequential Analysis of Observational Data
Using Markov Chains", in T.Kratochwill (Editor), Single Subject
Research: Strategies for Evaluating Change, Academic Press, New
York, 1978, pp. 237-285.

(13] J.Gould, "Some Psychological Evidence on how People Debug Computer
Programs", International Journal of Man-Machine Studies 7, 1975,
pp. 151-182.

[14] J.Gould and P.Drongowski, "An Exploratory Study of Computer Program

Debugging", Human Factors 16,3, 1974, pp. 258-277.

(15] T.Green, "Conditional Program Statements and Their Comprehensibility
to Professional Programmers", Journal of Occupational Psychology 50,

1977, pp. 93-109.

3-18

(161 T.Kratochvill (Editor), Single Subject Research: Strategies for
Evaluating Change, Academic Press, Ne York, 1978.

(171 T.lKratochvill, "Foundations of Time-Series Research", in
T.Kratochvill (Editor), Single Subject Research: Strategies for
Evaluating Change, Academic Press, New York, 1978, pp. 1-100.

[183 G.Myers, "A Controlled Experiment in Program Testing and Code
Walkthroughs/ Inspection", Comm.of the ACM 21,9 (Sept.1978),
pp. 760-768.

[19] B.Parsonson and D.Baer, "The Analysis and Presentation of Graphic
Data", in T.Kratochvill (Editor), Single Sublect
Research: Strategies for Evaluating Chanie, Academic Press, New
York, 1978, pp. 101-165.

[20] H.Sackman, W.Erikson, and E.Grant, "Exploratory Experimental Studies
Comparing Online and Offline Programming Performance", Comm.of the
ACM 11,1 (Jan. 1968), pp. 3-11.

(213 B.Shneiderman, "Exploratory Experiments in Programmer Behavior",
Int'l J. Computer and Information Sci., 5,2 (June 1976),
pp. 123-143.

[22] B.Shneiderman, "Measuring Computer Program Quality and
Comprehension", International Journal of Man-Machine Studies 9,
1977, pp. 465-578.

[23] B.Shneiderman and R.Mayer, "Syntactic/Semantic Interactions in
Programmer Behavior: A Model and Experimental Results", Int'l
J. Computer and Information Sci., 8,3 (June 1979), pp. 219-238.

[24] B.Shneiderman, R.Mayer, D.McKay, and P.Heller, "Experimental
Investigation of the Utility of Detailed Flowcharts in Programming",
Comm.of the ACM 20.6 (June 1977), pp. 373-384.

(251 N.F.Schneidevind and H.M.Hoffmann, "An Experiment in Software Error
Data Collection and Analysis", IEEE Transactions on Software
Engineering SE-5, May 1979, pp. 276-286.

[263 S.Sheppard, B.Curtis, M.Milliman, and T.Love, "Modern Coding
Practices and Programmer Performance", Computer 12.12, Dec. 1979,
pp. 41-59.

(26] M.Siue, A.Arblaster, and D.Guest, "Reducing Programming Errors in
Nested Conditionals by Prescribing a Writing Procedure",
International Journal of Nan-Machine tudites 2, 1977. pp. 119-126.

[281 M.Stme, T.Green, and D.Guest, "Psychological Evaluation of Two
Conditional Constructions Used in Computer Languages", International
Journal of an-Machine Studies 5.1 1973, pp. 105-113.

(293 M.Siue, T.Green, and D.Guest, "Scope Marking In Computer
Conditionals -- A Psychological Evaluation", International Journal
of Nan-machine Studies j 1977, pp. 107-118.

II~ ~ ~ ~ ~ ~ ~ ~~~97 "ppI-|" :

3-19

130] G.Weinberg and E.Schuluan, "Goals and Performance in Computer
Programming", Human Factors 16L,, 1974, pp. 70-77.

131] L.Weissman, "Psychological Complexity of Computer Programs: An
Experimental Methodology", SIGPLAN Notices 9,6 (June 1974),
pp. 25-36.

[32] E.Youngs, "Human Errors in Programming", International Journal of
Man-Machine Studies 6, 1974, pp. 361-376.

4-1

DATA COLLECTION VALIDATION AND ANALYSIS

Victor R. Basili
Department of Computer Science

University of Maryland

One of the major problems with doing measurement of the software

development process and the product is the ability to collect reliable data

that can be used to understand and evaluate the development process and product

and the various models and metrics. The data collection process consists of

several phases--establishing the environment in which the project is being

developed, the actual data collection process itself, the validation of the

collection process and the data, and, finally, the careful analysis and inter-

pretation of that data with respect to specific models and metrics. We will

discuss each of these phases.

ESTABLISHING THE ENVIRONMENT

Before we begin collecting data, we must understand the various factors

that affect software development. Data collection should begin with listing

those factors one hopes to control, measure, and understand. In this way, we

may characterize the environment, understand what we are studying, and be able

to isolate the effects. One possible approach is to create categories of

factors.

A partial list of factors is given below, categorized by their association

with the problem, the people, the process, the product, the resources, and the

tools. Some factors may fit in more than one category, but are listed only once.

1. People Factors - These include all the individuals involved in the

software development process, including managers, analysts, designers, program-

mers, librarians, etc. People-related factors that can affect the development

- process include: number of people involved, level of expertise of the individual

members, organization of the group, previous experience with the problem,

4-2

previous experience with the methodology, previous experience with working with

other members of the group, ability to communicate, morale of the individuals,

and capability of each individual.

2. Problem Factors - The problem is the application or task for which a

software system is being developed. Problem-related factors include: type

of problem (mathematical, database manipulation, etc.), relative newness to

state-of-the-art requirements, magnitude of the problem susceptibility to

change, new start or modification of an existing system, final product required,

e.g., object code, source, documentation, etc., state of the problem definition,

e.g., rough requirements vs. formal specification, importance of the problem,

and constraints placed on the solution.

3. Process Factors - The process consists of the particular methodolo-

gies, techniques, and standards used in each area of the software development.

Process factors include: Programming Languages, Process Design Language,

Specification Language, Use of Librarian, Walk-throughs, Test Plan, Code Reading,

Top Down Design, Top Down Development (stubs), Iterative Enhancement, Chief

Programmer Team, Nassi-Shneiderman Charts, HIPO Charts, Data Flow Diagrams,

Reporting Mechanisms, Structured Programming, and Milestones.

4. Product Factors - The product of a software development effort is

the software system itself. Product factors include: deliverables, size in

lines of code, words of memory, etc., efficiency tests, real-time requirements,

correctness, portability, structure of control, in-line documentation, structure

of data, number of modules, size of modules, connectivity of modules, target

machine architecture, and overlay sizes.

5. Resource Factors - The resources are the nonhuman elements allocated

and expanded to accomplish the software development. Resource factors include:

) target machine system, development machine system, development software,

*1

4-3

deadlines, budget, and response times and turnaround times. (Note there is a

relationship between resource and product factors in that the resources define

a set of limits within which the product must perform. Sometimes these

external constraints can be a dominating force on the product and sometimes

they are only a minor factor, e.g., it is easy to get the product to perform

well within the set of constraints.)

6. Tool Factors - The tools, although also a resource factor, are listed

separately due to the important impact they have on development. Tools are the

various supportive automated aids used during the various phases of the develop-

ment process. Tool factors include: requirements

analyzers, system design analyzers, source code analyzers (e.g., FACES),

database systems, PDL processors, automatic flowcharters, automated development

libraries, implementation languages, analysis facilities, testing tools, and

maintenance tools.

COLLECTING THE DATA

Once it is clear what the environmental factors are, it is important that

what data is needed be carefully considered. The data needed should be driven

by the basic models and metrics that will be used and studied. However, since

this may not always be known beforehand, especially in a research environment,

we must also include a second level set of data that involves what we may want

to know, model, or measure. Data collected in this bottom-up manner can be

used to refine and modify the existing models and metrics and be used to better

characterize our environment.

The actual collection process can take four basic formats: reporting forms,

interviews, automatic collection using the computer system, and automated data

analysis routines. The reporting forms are usually filled out by the various

_) members of the development team from senior management down to clerical support.

4-4

The benefits of participants filling out the forms is that they can usually give

detailed insights into what is really happening on the project and provide

greater levels of detail in the data. Questions on a form can be much more

specific than the kind of information one can collect automatically. On the

other hand, automated data collection has the advantage of being more accurate

since it is not as subject to human errors. It can also be done without the

participants being aware of what specific activities and factors are being

studied.

Form development is an art all by itself. First one needs to know what

data is needed. This must be modified by what data the participants

would be willing and able to answer accurately. One large factor here is sampling

rate, that is, how often can the forms be filled out so that the participant

is willing to do it and still remembers what it is you want to know. It is

important that a certain amount of redundancy be built into the data collection

process so that reliability checks can be made across the data forms.

Before forms are filled out, the participants should be given a training

course in filling out the forms. They should be supplied with a glossary of

terms, instructions on filling out the forms, and some sample filled out forms.

It would also be helpful if the training session covered some of the models the

data collectors had in mind so that the participants had a better idea of the

kind of information that was wanted.

One representative set of forms (Basili, et al) may look as follows:

1. A General Project Summary - This form would be used to classify the

project and will be used in conjunction with the other reporting forms to

measure the estimated versus actual development progress. It should be

filled out by the project manager at the beginning of the project, at each major

milestone, and at the end. The final report should accurately describe the

system development life cycle.

4-5

2. A Programmer/Analyst Survey - This form would classify the background

of the personnel on each project. It should be filled out once at the start

of the project by all personnel.

3. A Component Summary - This form would be used to keep track of the

components of a system. A component is a piece of the system identified by

name or common function (e.g., an entry in a tree chart or baseline diagram for

the system at any point in time, or a shared section of data such as a COMMON

clock). With the information on this form combined with the information on

the Component Status Report, the structure and status of the system and its

development can be monitored. This form is filled out for each component at

the time that the component is defined, at the time it is completed, and at

any point in time when a major modification is made. It should be filled out

by the person responsible for that component.

4. A Component Status Report - This form would be used to keep track of

the development of each component in the system. The form is turned in at the

end of each week and for each component lists the number of hours spent on

it. This form is filled out by persons working on the project.

5. A Resource Summary - This form keeps track of the project costs on

a weekly basis. It is filled out by the project manager every week of the

project duration. It should correlate closely with the component status report.

6. A Change Report Form - The change report form is filled out every time

the system changes because of change or error in design, code, specifications

or requirements. The form identifies the error, its cause and other facets of

the project that are affected.

7. Computer Program Run Analysis - This form is used to monitor the

computer activities used in the project. An entry is made every time the

computer is used by the person initiating the run.

. -". I -
+
.. .I l l n - - m - .. . + -

4-6

Interviews are used to validate the accuracy of the forms and to supple-

ment the information contained on them in areas where it is impossible to

expect reasonably accurate information in a form format. In the first case,

spot check interviews are conducted with individuals filling out the forms

to check that they have given correct information as interpreted by an

independent observer. This would include agreement about such things as

the cause of an error or at what point in the development process the error

was caused or detected.

In the second case, interviews can be held to gather information in

depth on several management decisions, e.g., why a particular personnel organi-

zation was chosen, why a particular set of people was picked, etc. These are

the kinds of questions that often require discussion rather than a simple

answer on a form.

The easiest and most accurate way to gather information is through an

automated system. Throughout the history of the project, more and more

emphasis should be placed on the automatic collection of data as we become more

aware what data we want to collect, i.e., what data is the most valuable and

what data we can or need to get, etc. More effort is required in the development

or procurement of automatic collection tools.

The most basic information-gathering device is the program development

library. The librarian can automatically record data and alleviate the clerical

burden from the manager and the programmers. Copies of the current state of

affairs of the development library can be periodically archived to preserve

the history of the developing product.

A second technique for gathering data automatically is to analyze the

product itself, gathering information about its structure using a program

analyzer system. What data is gathered depends upon the particular product

metrics.

4-7

The above data collected on the project should be stored in a computer-

ized database. Data analysis routines can be written to collect derived data

from the raw data in the database.

The data collection process is clearly iterative. The more we learn, the

better informed we are about what other data we need and how better to collect it.

DATA VALIDATION

After archiving, the next stage is to validate the encoded data. The

first step in the validation process is a review of the forms as they are

handed in by someone connected with the data collection process to make sure

all the forms have been handed in and that the appropriate fields have been

filled out. The next step is to enter the data into the database through a

program that checks the validity of the data format and rejects data out of

the appropriate ranges. For example, this program can assure that all dates

are legal dates and that system component names and programmer names are valid

for the project by using a prestored list of component and programmer names.

Ideally, all data in the database should be reviewed by individuals who

know what the data should look like. Clearly, this is expensive and not always

possible. However, several projects should be reviewed for errors in detail

and counts of the number of errors and types of errors kept so that error

bounds can be calculated for the unchecked data. This allows data to be inter-

preted with the appropriate care.

Another type of validity check is to examine the consistency of the database

by examining redundant data. This can be done by comparing similar data from

different sources to assure the data is reasonably accurate. For example, if

effort data is collected at the budget level (resource summary data) and at the

individual programmer level (component status data), there should be a reasonable

correlation between the two total efforts. Another approach is to use cluster

............ •

4-8

analysis to look for patterns of behavior that are indicative of errors in

filling out the forms. For example, if all the change report forms filled out

by a particular programmer fall into one cluster, it may imply that there is a

bias in the data based upon the particular programmer.

It is clear data collection is a serious problem, especially in the

collection of data on large programming projects across many environments

where one set of forms may not be enough to capture what is happening in each

of the environments. Unfortunately, if we are to compare projects, we do need

common data and we need to know how valid that data is in each case so as not to

draw improper conclusions.

DATA ANALYSIS AND RESULT REPORTING

After the environment has been established, the appropriate data collected

and validated, the process of data analysis can begin. The first step entails

fitting the data to the specific models and metrics and the interpretation of

the results. If the data supports the model, then it reinforces our understand-

ing of the software development process and product. If the data does not

support the model, then we must further analyze the model and its application

to the data and the data collection environment. It is possible that the data

collection environment did not satisfy some of the assumptions of the model,

explicit or otherwise. We can use this data to either refine or refute the model

or to gain new insights into our software development environment. In any case,

the application of the model to the data often generates more questions than it

answers and sets the stage for new analysis and new data to be collected.

The data analysis process can be motivated by the different needs for

understanding. When linked with various models and metrics, the data analysis

can be used (1) to evaluate the software development process and product, (2) as

a tool for software development, and (3) to monitor the stability and quality of

4-9

an existing product. The data collection and analysis process varies with each

area of interest.

Better understanding of the software development process and the software

development product is a critical need. Metrics can help in that understanding

by allowing us to compare different products and different development environ-

ments and providing us with insights regarding their characteristics. Too often

we think of all software as the same. Metrics can be used to delineate the

various software products and environments.

Many metrics have as a major goal the evaluation of the quality of the

process or product in a quality assurance environment. Thus a low score, on a

metric like the number of errors, indicates something desirable about the

quality of the process while a high score on the same metric indicates something

quite undesirable about the product. Here data can be analyzed after the project

is over.

A second use of metrics would be as a tool for development. In this case,

the metric can act as feedback to the developer, letting him know how the

development is progressing. It can be used to predict where the project is going

by estimating future size or cost, or it may tell him his current design is too

complicated and unstructured. Metrics should certainly be used across the entire

life cycle and as early as possible to facilitate estimation as well as evaluation.

Here data must be analyzed in real time and reports generated in a form easily

understandable by the software developer.

A third use of metrics is to monitor the stability and quality of the

product through maintenance and enhancement; that is, we can periodically

recalculate a set of metrics to see if the product has changed character in some

way. It can provide a much needed feedback during the maintenance period. If

we find over a period of time that more and more control decisions have entered

4-10

the system, then something may have to be done to counteract this change in

character. This last use of metrics is relativistic, requiring only a simple

partial ordering to give us an indication of what is changed. A relative

measure is clearly easier to validate than an absolute measure. The first two

uses of metrics--the evaluation of the process and product and the tool of

development--are predominantly absolute metrics; that is, there is nothing to

compare them to within the same project. You may only compare their values with

the values of the metrics on other projects. The drawback to an absolute metric

is that we need some normalization and calibration factor to tell us what is

good and what is bad. The data analysis environment here is somewhere between

the two discussed above.

Data collected from any project must be interpreted with great care. One

must know the nature of the project and its development environment. To use

any model or metric, one must fully understand its assumptions as well as its

strengths and weaknesses in order to interpret the results for the particular

environment. One must generalize to other environments very cautiously and with

great reserve. One unmeasured factor may account for a complete change in

effect.

When reporting data, one should report the raw data, the various factors

as they are understood, and, in the case of experiments, any statistical results

independent of interpretation. It is important in reporting results to define

the terms used as precisely as possible. There .s a large communication problem

due to imprecise units of measurement. For example, if size is reported in lines

of source code, the measure is dependent upon the language used, whether or not

comments are counted and the comenting convention, and whether or not only

executable statements are counted. The difference in the figures could be of

the order of two or three to one. Whenever the results of an analysis are

4-11

reported, it is important to publish error bounds, not just in the fit to the

model, but in the actual data collection process itself.

There is a great deal of work to be done in the data collection process.

More work must be done in defining terms. A variety of models must be developed

which provide us with different viewpoints of the software development process

and we must not fall into the trap of assuming that there is a single overall

model of software and the software development process. Most important, because

of the nature of experimentation and analysis and the many factors that contribute

to software development, we must be ready to duplicate the studies and experiments

of others and report our results in the open literature. It is only when a

wealth of data is obtained to support a particular hypotheses that the software

community will gain the confidence to believe in it.

Reference

(Basili, et al) Victor R. Basili, Marvin V. Zelkowitz, Frank E. McGarry,

Robert W. Reiter, Walter F. Truszkowski, David L. Weiss, THE SOFTWARE

ENGINEERING LABORATORY, Technical Report TR-535, May 1977, University of

Maryland, Computer Science Center, College Park, Maryland 20742

5-1

EXPERIMENTAL EVALUATION OF SOFTWARE CHARACTERISTICS
AND PROGRAMMER PERFORMANCE

Bill Curtis
Information Systems Programs
General Electric Company

Arlington, Virginia

Cause-Effect Relationships

Most studies on software metrics do not demonstrate
cause-effect relationships between software characteristics
and programmer performance. That is, there were uncon-
trolled factors in the data collection environment which
could have influenced the observed data. These alternate
explanations of the results dilute any statement of cause
and effect. Although structural equation techniques
(Duncan, 1975; Heise, 1975) allow an investigation of
whether the data are consistent with one or more theoretical
models, a causal test of theory will require a rigorously
controlled experiment. According to Cattell (1966):

An experiment is a recording of observations. .made
by defined and recorded operations and in defined con-
ditions followed by examination of the data...for the
existence of significant relations. (p. 20)

Two important characteristics of an experiment are that
its data collection procedures are repeatable and that each
experimental event result in only one from among a defined
set of possible outcomes (Hays, 1963). An experiment does
not prove an hypothesis. It does, however, allow for the
rejection of competing alternative explanations of a pheno-
menon.

The confidence which can be placed in a cause-effect
statement is determined by the control over extraneous vari-
ables exercised in the collection of data. For instance,
Milliman and Curtis (1980) reported a field study in which a
software development project guided by modern programming
practices produced higher quality code with less effort and
experienced fewer system test errors when compared to a
sister project in the same environment which did not observe
these practices. Although many of the environmental factors
were controlled, an alternate explanation of the results was
that the project guided by modern practices was performed by
a programming team with more capable personnel.

An important characteristic of the classical exper-
imental method in behavioral science is the random assign-
ment of participants to conditions (Fisher, 1935). By
removing any systematic variation in the ability,
motivation, etc. of participants across experimental

5-2

conditions, this method supposedly eliminates the hypothesis
that experimental effects are due to individual differences
among participants. Assigning a morning class to one
condition and an aftirnoon class to another condition does
not constitute random assignment, since students rarely
choose class times on a random basis. However, if classes
are the unit of study, the problem can be solved by randomly
assigning a number of classes to each experimental condition.
Random assignment has been a problem in testing causal
relationships in field studies on actual software development
projects.

There is often a conflict between what Campbell and
Stanley (1966) describe as the internal and external valid-
ity of an experiment. Internal validity concerns the rigor
with which experimental controls are able to eliminate
alternate explanations of the data. External validity con-
cerns the degree to which the experimental situation resem-
bles typical conditions surrounding the phenomena under
study. Thus, internal validity expresses the degree of
faith in causal explanations, while external validity des-
cribes the generalizability of the results to actual situ-
ations.

In software engineering research, rigorous experimental
controls are difficult to achieve on software projects and
laboratory studies often seem contrived. External validity
is probably a greater problem in studying process factors
such as the organization of programming teams than in
studying product factors such as software characteristics.
That is, the environmental conditions surrounding software
development which are difficult to replicate in the labor-
atory would probably have a greater effect on the func-
tioning of programming teams than on a programmer's compre-
hension of code.

Reviews of the experimental research in software engin-
eering have been compiled by Atwood, Ramsey, Hooper, and
Kullas (1979), Moher and Schneider (1979), and Shneiderman
(1980). Topics which have been submitted to experimental
evaluation include batch versus interactive programming,
programming style factors (e.g., indented listings, mnemonic
variable names, and commenting), control structures, docu-
mentation formats, code review techniques, and programmer
team organization. In the next section I will review one of
the more extensive areas of experimental research in soft-
ware engineering: the evaluation of conditional statements
and control flow. This topic was not chosen because it was
believed to be more important than other subjects. Rather,
it was chosen because several programs of research have
investigated this topic and because the conditional state-
ment has been a focus of argument since it was originally
assailed by Dijkstra in 1968. Control statements have been
a concern of the structured programming movement, and the
results reported here evaluate their most effective imple-
mentation.j

5-3

Conditional Statements and Control Flow

Sime, Green, and their colleagues at Sheffield Univer-
sity have been studying the difficulty people experience in
working with conditional statements. In their first exper-
iment Sime, Green, and Guest (1973) compared the ability of
non-programmers to develop a simple algorithm with either
nested or branch-to-label conditionals. Nesting implies the
embedding of a conditional statement within one of the bran-
ches of another conditional. Nested structures are designed
to make this embedding more visible and comprehensible to a
programmer. Branch-to-label structures obscure the visi-
bility of embedded conditions, since the "true" branch of a
conditional statement sends the control elsewhere in the
program to a statement with a specified label.

The conditional for the nested language was an
IF-THEN-OTHERWISE construct similar to conditionals used in
Algol, PL/I, and Pascal. This conditional construct is
written:

IF [condition] THEN [process 1]
OTHERWISE (process 2]

The branch-to-label conditional was the IF-GOTO construct of
Fortran and Basic which Dijkstra (1968) considered harmful.
This conditional is written:

IF (condition] GOTO Ll
[process 21

Ll [process 1]

Participants used one of these micro-languages to build
an algorithm which organized a set of cooking instructions
depending on the attributes of the vegetable to be cooked.
Sime et al. found that participants using the GOTO construct
finished fewer problems, took longer to complete them, and
made more semantic (e.g., logic) errors in building their
algorithms than participants using the IF-THEN-OTHERWISE
construct.

In a second experiment, Sime, Green, and Guest (1977)
investigated different techniques for marking the scope of
the processes subsumed under each branch of a conditional
statement. In addition to the IF-GOTO conditional, they
defined a nested BEGIN-END and a nested IF-NOT-END repre-
senting two different structures for marking the scope of
each branch in nested conditionals. The BEGIN and END
statements mark the scope of processes performed under one
branch of an IF-THEN-OTHERWISE construct, while the IF-NOT-
END uses a more redundant scope marker by repeating the
condition whose truth is being tested. The IF-NOT-END
construct is written:

IF (condition) (process 1)

NOT (condition) (process 2)
<I. END (condition)

5-4

Sime et al. (1977) found that more semantic (algo-
rithmic) errors occurred in the IF-GOTO language, while
errors in the nested languages were primarily syntactic
(grammatical). The BEGIN-END construct produced more syn-
tactic errors and only half as many successful first runs as
the other constructs. Errors were debugged ten times faster
in the IF-NOT-END condition, which proved to the the most
error free construct.

Based on the results of this second experiment, Sime,
et al. (1972) proposed that information is easier to extract
from some languages than others. They distinguished two
types of information: sequence and taxon. Sequence infor-
mation involves establishing or tracing the flow of control
and events forward through a program. Taxon information
involves the hierarchical arrangement oT -conditions and
processes within a program. Such information is important
when tracing backward through a program to determine what
conditions must be satisfied for a process to be executed.
Sime et al. hypothesized that sequence information is more
easily obtained from a nested language, while taxon
information is more easily extracted from a nested language
which also contains the redundant conditional expressions.
In two subsequent studies Green (1977) validated the
hypothesis about differences between sequence and taxon
information in research with professional programmers.

It is important to recognize that program comprehension
is not a unidimensional cognitive process. Rather, dif-
ferent types of human information processing are required by
different types of software tasks. Green demonstrated that
certain constructs were more helpful for performing certain
software tasks. Software engineering techniques may differ
in the benefits they offer to different programming tasks,
since they differ in the types of human information pro-
cessing that they assist. Models of programmer performance
need to take this interaction between task and process into
account if valid hypotheses are to be derived from them.

Since the IF-NOT-END construct is not implemented in
existing languages, Sime, Arblaster, and Green (1977) inves-
tigated ways to improve the use of the BEGIN-END conditional
markers for IF-THEN-OTHERWISE constructs. They developed a
tool which would automatically build the syntactic portions
of a conditional statement once the user chose the expres-
sion to be tested. In a second experimental condition, they
developed an explicit writing procedure for helping parti-
cipants develop the syntactic elements of a conditional
statement. This procedure involved writing the syntax of
the outermost conditional first, and then writing the syntax

5-5

of conditionals nested within it. In the final condition
participants were left to their own ways of creating the
conditional constructs.

Sime et al. found that participants solved more prob-
lems correctly on their first attempt using the automated
tool, but that a writing procedure was almost as effective.
The writing procedure reduced the number of syntactic
errors, which had been the major problem with the BEGIN-END
construct in earlier studies. Syntactic errors were not
possible with the automated tool. The writing procedure and
automated tools helped participants dispense with syntactic
considerations quickly, so that they could spend more time
concentrating on the semantic portion of the program (i.e.,
the function which was to be performed). However, once an
error was made, it was equally difficult to correct regard-
less of the condition. Thus, writing procedures and tools
primarily increased the accuracy of the initial implemen-
tation.

The extensive program of research by Sime, Green, and
their colleagues demonstrated:

the superiority of nested over branch-to-label
conditionals;

the advantage of redundant expression of control-
ling conditions at the entrance to each condi-
tional branch;

that the benefits of a software practice may vary
with the nature of the task; and

that a standard procedure for generating the syn-
tax of a conditional statement can improve coding
speed and accuracy.

Overall, these results indicate that the more visible and
predictable the control flow of a program, the easier it is
to work with.

In a separate attempt to evaluate the GOTO statement,
Lucas and Kaplan (1974) instructed 32 students to develop a
file update program in PL/C, and half were further instruc-
ted to avoid the use of GOTOs. However, programmers in the
GOTO-less condition were not trained in using alternate
conditional constructs. Not surprisingly, the GOTO-less
group required more runs to develop their programs. In a
subsequent task, all participants were required to make a
specified modification to a structured program. Contrary to
results on the earlier task, the group which had earlier

) struggled to write GOTO-less code made quicker modifications
which required less compile time and storage space.

5-6

Weissman (1974) also investigated the comprehension of
PL/I programs written in versions whose control flow was
either 1) structured, 2) unstructured but simple, or 3)
unstructured and complex. Participants were given compre-
hension quizzes and required-to make modifications to the
programs. Higher performance scores were typically obtained
on the structured rather than unstructured versions, and
participants reported feeling more comfortable with struc-
tured code. Love (1977) subsequently found that graduate
students could comprehend programs with a simplified control
flow more easily than programs with a more complex control
flow.

Recently, a series of experiments evaluating the bene-
fits of structured code for professional programmers was
reported by Sheppard, Curtis, Milliman, and Love (1979). In
the first two experiments three versions of control flow
performing identical functions were defined for each of
several Fortran programs. One version was structured to be
consistent with the principles of structured coding des-
cribed by Dijkstra (1972). Because structured constructs
are sometimes awkward to implement in Fortran IV (Tenny,
1974), a more naturally structured control flow was devised
which allowed limited deviations from strict structuring:
multiple returns, judicious backward GOTOs, and forward mid-
loop exits from a DO. Finally, a deliberately convoluted
version was developed which included constructs that had not
been permitted in the structured or naturally structured
versions.

The first experiment was on comprehension and required
participants to reconstruct a previously studied program.
As expected, the convoluted control flow was significantly
more difficult to comprehend than naturally structured pro-
grams. Differences between naturally and strictly struc-
tured programs were insignificant.

In a second experiment Sheppard et al. instructed pro-
grammers to make specified modifications to three programs,
each of which was written in the three versions of control
flow described previously. A significantly higher percen-
tage of the steps required to complete each modification was
correctly implemented in the strictly structured programs
when compared to convoluted ones. No statistically signi-
ficant differences appeared between the two versions of
structured control flow.

Results from the first two experiments suggested that
the presence of a consistent structured discipline in the
code was beneficial, and minor deviations from strict struc-
turing did not adversely affect performance. This premise
was tested in a third experiment which compared the two
versions of structured Fortran IV to Fortran 77. Fortran
77 contains the IF-THEN-ELSE, DO-WHILE, and DO-UNTIL con-

5-7

structs usually associated with structured coding. They
measured how long a programmer took to find a simple error
embedded in a program. No differences were attributable to
the type of structured control flow, replicating similar
results in the first two experiments. The advantage of
structured coding appears to reside in the ability of the
programmer to develop expectations about the flow of control
- expectations which are not seriously violated by minor
deviations from strict structuring.

The research reviewed here indicates that programs in
which some form of structured coding is enforced will be
easier to comprehend and modify than programs in which such
coding discipline is not enforced. It is not clear that
structured coding will improve the productivity of program-
mers during implementation. However, some productivity
improvements may be observed if less severe, more easily
corrected errors are made using structured constructs (as
suggested in the data of Sime and his colleagues). Struc-
tured coding should reduce the costs of maintenance since
such programs are less psychologically complex to repair and
modify. Experiments such as these can provide valuable
guidance for decisions about an optimal mix of software
standards and practices.

Problems in Experimental Research

It is important to recognize the benefits and limita-
tions of controlled laboratory research. On the positive
side, rigorous controls allow experimenters to isolate the
effects of experimentally manipulated factors and identify
possible cause-effect reltaionships in the data. On the
other hand, the limitations of controlled research restrict
the generalizations which can be made from the data. Labor-
atory research has an air of artificiality, regardless of
how realistic researchers make the tasks.

Several problems attendant to most current empirical
validation studies severely limit the generalizability of
conclusions which can be drawn from them (Brooks, 1980).
For instance, program sizes have frequently been restricted
because of limitations in the research situation. This
problem is characteristic of experimental research where
time limitations do not allow participants to perform exper-
imental tasks involving the coding or design of large
systems. Also, since new factors come into play in the
development of large systems (e.g., team interactions), the
magnitude of a technique's effect on project performance may
differ markedly from its effect in the laboratory.

The nature of the applications studied are often lim-
ited by the environments from which the programs are drawn
(e.g., military versus commercial systems, real-time versus

5-8

non-real-time systems, etc.). Further, there is frequently
little assessment of whether results will hold up across
programming languages. It is extremely difficult to perform
evaluative research over a broad range of applications,
especially when experimental-procedures are used. Thus,
empirical results should be replicated over a series of
studies on different types of programs and in languages
other than Fortran.

Another problem arises with what Sackman, Erickson, and
Grant (1968) and Sheppard et al. (1979) observed to be 25 or
30 to 1 differences in performance among programmers. This
dramatic variation in performance scores can easily disguise
relationships between software characteristics and asso-
ciated criteria. That is, differences in the time or accu-
racy of performing some software task can often be attri-
buted more easily to differences among programmers than to
differences in software characteristics. Careful attention
to experimental design is required to control this problem.

If generalizations are to be made about the performance
of professional programmers, this is the population that
should be studied rather than novices. As is true in most
fields, there are qualitative differences in the problem-
solving processes of experts and novices (Simon, 1979).
However, the advantage of some techniques is the ease with
which they are learned, and novices are the appropriate
population for studying such benefits. Attempts to gen-
eralize experimental results must also be tempered by an
understanding of how real-world factors affect outcomes.
Data should be collected in actual programming environments
to both validate conclusions drawn from the laboratory and
determine the influence of real-world factors.

Measurement and experimentation are complementary pro-
cesses. The results of an experiment can be no more valid
than the measurement of the constructs investigated. The
development of sound measurement techniques is a prere-
quisite of good experimentation. Many studies have elabo-
rately defined the independent variables (e.g., the software
practice to be varied) and hastily employed a handy but
poorly developed dependent measure (criterion). For
instance, program reconstruction is not a good measure of
comprehension, since it is affected by memorization skills.
Results from experiments with inadequate dependent variables
are difficult to explain because they are confounded with
other processes.

Results are far more impressive when they emerge from a
program of research rather than from one-shot studies. Pro-
grams of research benefit from several advantages, one of
the most important being the opportunity to replicate find-
ings. When a basic finding (e.g., the benefit of structured
coding) can be replicated over several different tasks

5-9

(comprehension, modification, etc.) it becomes much more
convincing. A series of studies also result in deeper
explication of both the important factors governing a
process and the limits of their effects. Performing a
series of studies also affords an opportunity to improve
measurement and experimental methods. Thus, the reliability
and validity of results can be improved in succeeding
studies.

Approaches to Experimental Research

There are three primary experimental approaches appro-
priate for research on problems in software engineering:
the case study, the classical multi-participant experiment,
and simulation. Each of these approaches has advantages for
studying certain types of problems. The paper by Fred Say-
ward in this collection reviews the case study approach,
while I have concentrated on the classical multi-participant
experiment. This latter technique is primarily a method of
determining cause-effect relationships for a limited number
of factors.

The case study approach can be used in either
single-subject research or project field studies. In
single-subject research the case study involves collecting
continuous protocol data from a participant who is
performing a software task, most frequently the design and
implementation of an algorithm. A critical problem comes in
defining a unit of behavior and in avoiding the many sources
which contaminate protocol data. Such data is often
difficult to interpret, but holds promise for modeling the
human cognitive processes involved in software development.
These models are more difficult to build from the results of
classical multi-participant experiments, although protocol
data can be collected in such experiments. Thus, the
single-subject approach may be more appropriate for initial
data gathering from which models can be built and experi-
mentally tested using other approaches. In field studies of
software development projects, longitudinal data can be
collected which help describe actual software development
processes and determine the effects of environmental factors
not studied in the laboratory (Milliman & Curtis, 1980).
Such data are appropriate for developing the resource models
described in the paper by Basili in this collection.

The experimental investigation of software design tech-
niques for large systems would be difficult or impossible by
any of the methods described previously. That is, funding
is not available for implementing a quarter-million line
software system in parallel by two or more project teams,
each using a different design technique (e.g., data
structured versus functionally structured). However,
simulation tools are becoming available which will allow us
to simulate the full implementation of a software design.

5-10

An experiment on design techniques using a simulation tool
need go no further than the initial design specification in
order to obtain worthwhile results. System size, performance,
and some quality metrics would be generated in such an
experiment. Simulation techniques hold great promise for
many questions in software engineering which seem intractable
to current experimental methodologies.

Conclusion

There is a steadily growing body of experimental
research on software engineering techniques and their
effects on programmer productivity. These experiments have
been performed on problems which have been the easiest to
operationally define and control in an experimental setting.
Such problems involve the use of structured coding, flow-
charts, indented listings, etc. Now that results are begin-
ning to emerge on these topics, evaluative data are des-
perately needed on the most effective tools for assisting
programmers in software development and maintenance.

The greatest opportunities for control over the out-
comes of a software project are those gained during the
development of requirments and the initial design speci-
fication. Almost no experimental research has evaluated
various methods for creating and recording requirements and
initial design specifications. Lance Miller and his col-
leagues at IBM's Watson Research Center, however, have per-
formed some research on problem-solving techniques which
relate to software development.

Another critical area of research involves language
differences. Experiments such as those reported here on
structured coding and those on strongly versus weakly typed
languages performed by Gannon (1977) have provided some
initial results on language characteristics. However, lar-
ger experiments comparing the usefulness of various types of
languages (e.g., APL vs. Ada vs. Fortran) for implementing
different types of algorithms need to be performed. The
advent of non-procedural languages invites such comparisons.
New methodologies for performing such experiments need to be
developed, and some may be an order of magnitude more dif-
ficult to implement than the methodologies currently in use.
However, simulation techniques may provide a new source of
data which avoids problems associated with individual
differences among programmers. Such experiments will
provide critical data on the most important factors
affecting programmer productivity and software quality.

5-11

ACKNOWLEDGEMENTS

I would like to thank Laszlo Belady and Sylvia Shep-
pard, and Drs. Elizabeth Kruesi and John O'Hare for their
thoughts and comments. Portions of this paper were drawn
from work supported by the Office of Naval Research,
Engineering Psychology Programs (Contract #NO0014-79-C-
0595). However, the opinions expressed in this paper are
not necessarily those of the Department of the Navy.
Reprints can be obtained form Dr. Bill Curtis; General
Electric Company, Suite 200; 1755 Jefferson Davis Highway;
Arlington, VA 22202.

.. • . . .1 h , l ,, , . . . ,, M. i

5-12

REFERENCES

Atwood, M.E., Ramsey, H.R., Hooper, J.N., & Kullas, D.A.
Annotated Bibliography on Human Factors in Software
Development (Tech. Report TR-P-79-1). Alexandria, VA:
Army Research Institute, 1979. (NTIS No. AD A071 113).

Brooks, R. Studying programmer behavior experimentally:
The problems of proper methodology. Communications of
the ACM, 1980, 23, 207-213.

Campbell, D. & Stanley, J. C. Experimental and quasi-
Experimental Designs for Research. Chicago:
Rand-McNally, 1966.

Cattell, R. B. The principles of experimental design and
analysis in relation to theory building. In R.B.
Cattell (Ed.), Handbook of Multivariate Experimental
Psychology. Chicago: Rand-McNally, 1966, 19-66.

Dijkstra, E. W. GO TO statement considered harmful.
Communications of the ACM, 1968, 11, 147-148.

Dijkstra, E. W. Notes on structured programming. In 0. J.
Dahl, E. W. Dijkstra, & C.A.R. Hoare (Eds.) Structured
Programming. New York: Academic, 1972, 1-82.

Duncan, 0. D. Introduction to Structural Equation Models.
New York: Academic, 1975.

Fisher, R. A. The Design of Experiments. London: Oliver &
Boyd, 1935.

Gannon, J. G. An experimental evaluation of data type
conventions. Communications of the ACM, 1977, 20, 584-
595.

Green, T. R. G. Conditional program statements and their
comprehensibility to professional programmers. Journal
of OccuDational Psychology, 1977, 50, 93-109.

Hays, W. L. Statistics. New York: Holt, Rinehart, &
Winston, 1973.

Beise, D. R. Causal Analysis. New York: Wiley, 1975.

Love, T. An experimental investigation of the effect of
program structure on program understanding. SIGPLAN
Notices, 1977, 12 (3), 105-113.

5-13

Lucas, H. C. & Kaplan, R. B. A structured programming experiment.
The Computer Journal, 1974, 19, 136-138.

Milliman, P. & Curtis, B. A Matched Project Evaluation of
Modern Programming Practices (RADC-TR-80-6, 2 vols.).
Griffiss AFB, NY: Rome Air Development Center, 1980.

Moher, T. & Schneider, G. M. Methods for Improving Controlled
Experimentation in Software Engineering (Tech. Rep.
80-8). Minneapolis, MN: University of Minnesota,
Computer Science Department, 1980.

Sackman, H., Erickson, W. J., & Grant, E. E. Exploratory
and experimental studies comparing on-line and off-line
programming performance. Communications of the ACM,
1968, 11, 3-11.

Sheppard, S. B., Curtis, B., Milliman, P., & Love, T.
Modern coding practices and programmer performance.
Computer, 1979, 12, 41-49.

Shneiderman, B. Software Psychology: Human Factors in
Computer and Information Systems. Cambridge, MA:
Winthrop, 1980.

Sime, M. E., Arblaster, A. T., & Green, T. R. G. Reducing
programming errors in nested conditionals by prescribing
a writing procedure. International Journal of Man-Machine
Studies, 1977, 9, 119-126.

Sime, M. E., Green, T. R. G., & Guest, D. J. Psychological
evaluation of two conditional constructions used in
computer languages. International Journal of Man-Machine
Studies, 1973, 5, 105-113.

Sime, M. E., Green, T. R. G., & Guest, D. J. Scope marking
in computer conditionals - A psychological evaluation.
International Journal of Man-Machine Studies, 1977,
9, 107-118.

Simon, H. A. Information processing models of cognition.
In M. R. Rosenzweig & L. W. Porter (Eds.) Annual Review
of Psycholosy (Vol. 30). Palo Alto, CA: Annual Reviews,
1979, 363-396.

Tenny, T. Structured programming in Fortran. Datamation,
1974, 20 (7), 110-115.

Weissman, L. M. A Method for Studying the Psychological
Complexity of Computer Programs (Tech. Rep. TR-CSRG 37).
Toronto: University of Toronto, Department of CompUter
Science, 1974.

6-1

SOFTWARE PROJECT FORECASrING

Richard A. DeMillo
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 320332

Richard J. Lipton
Department of Electrical Enjineering and Computer Science

Princeton University
Princeton, NJ 08750

THIS IS A DRAFT COPY OF A PAPER PREPARED FOR THE JUNE 30
-l MEETING ON SOF~ RE METRICS -- SINCE THIS IS ONLY A
PRELIMINARY VERSION PLEASE DO NDT- TRC7E UR C -

TdIS PNPER WIrNOUr CONSULTING FIRSr WITU THE AUrH RS

INTRODUCTIOq

A characterizing feature of the sciences is that they

seek to explain, describe and predict phenomena. While

there are varying degrees of exactness in the sciences (the

predictions of physics are of a quantitative character,

different than, say, the predictions of economics) the basis

of scientific activity is rational and objective. This is

what distinguishes economics from astrology -- even though

it might be argued that econonic and astrological predic-

tions are equally vague, econo-ii: predictions are the result

of rational analysis of evidence. Thus we intend to divide

sciences from non-sziences on the basis of the rational

nature of the activities; for a detailed discussion, see

Let's now look at the problem of "measurinj* software.

DeMillo and Lipton DRAFT 6-2

It is evident from the remaining papers in this collection

that aside from a well-founded concern over methodological

issues, the principle aim of studying software metrics is

not the static determination of software properties, but is

rather the scientific prediction of phenomena during the

software lifecycle. Indeed, Perlis, Sayward and Shaw point

out (cf. [2]): "The purpose of software metrics is to

provide aids for making the optimal choice... at several

points in the life cycle." They go on to illustrate the

nature of the decision points.

- How long will it take to produce the software?

- When will it have to be replaced?

- What are the manpower requirements?

- How will the availability of tool X affect factor Y?

- How close to its resource limits will the system run?

- Will it run reliably?

These are manifestly problems of prediction. As intriguing

as the issues of explanation and description may be -- our

ability to usefully model software is still primitive -- the

exigencies of governmental and commercial computing demand a

reasonable facility in forecasting critical software project

parameters. We will address this forecasting problem in the

sequel. We pretend no well-formed answers here. In fact,

our goal is the rather modest one of pointing out that there

is a scientific (although possibly inexact) component of the

problem that is not adequately conveyed by the term

DeMillo and Lipton DRAFT 6-3

"software metrics': the use of past information to predict

the future of a software system.

ANALOGIES

Inevitably, primitive sciences are compared to physics,

the reliable standard of scientific rigor and success. Of

course, inexact sciences fare very bally in the comparison,

but often the reason they fare so badly is not understood.

Physics stands almost alone among the sciences in the exact-

ness and simplicity of its theories. The price paid is the

complexity of the situations that can be profitably handled

by the theories. Predicting the behavior of complex systems

-- particularly those involving human interactions -- is

almost never carried out by deducing from first principles,

that is, from physical theory. Tim Standish [3] points out

that most scientific knowledge is organized so that

phenomena at one level cnn be explained in terms of (or

"reduced to") phenomena at a more basic level; for example,

physical chemistry explains chemical behavior in purely

physical terms. Only rarely, however, is it possible to

compose several such reduztions in intellectually manageable

fashion. Thus while it is possible to imagine physical

explanations of biological phenomena, biological

explanations of psychological phenomena, and a psychological

basis for social behavior, it is extremely unlikely that

there will ever be a physical theory of social behavior.

C- Jim Browne is correct: "There ace analogies from other

sciences."[f]. We even agree that the fundamental issues

DeMillo and Lipton DRAFT 6-4

are predictive and phenomenological. We differ in the

choice of analogies, and we also differ on the role that

measurement plays in constructing useful forecasts. It

seems very unlikely that the theory of software forecasting

is like physical theory at an early stage in its develop-

ment. We have argued elsewhere [51 that software exhibits

much complexity and ad-hocery, features that cannot easily

be abstracted from real situations or simplified with

approximations. The prediction problem for software is more

akin to the corresponding problems in those disciplines that

deal with complex systems; rather than turn to physics for

our methodology, we should turn to the less exact sciences

-- fields such as meteorology, economics, political scienc!

and even the construction industry in which the explanatory

component is subjugated to the predictive component

primarily because of the extreme public and social

significance of the predictions.

'1hy distinguish at all between explanatory and predic-

tive theories? After all, predictiva and explanatory

assertions are logically equivalent. They both use evidence

to convince a listener of an hypothesis. They may both give

"laws" concerning an effect X; the exactness of the laws may

vary from that of the quasi-laws (1] (X is asserted to be

present except in certain exceptional cases) to the more

exact statistical laws (X is asserted to be present in a

stated fraction of the observations) to the mathematically

exact physical laws. Predictions and explanations are,

however, distinguished in a fundamental way: in explanatory

DeMillo and Lipton DRAFT 6-5

theories the hypotheses concern events which are past, while

predictions are hypotheses concerning future events. In

logical terms, for an explanation to establish its

conclusion, it must be more credible than its negation. On

the other hand, a prediction must only be rendered more

tenable than the alternatives!

METEOROLOGY

The physical basis of meteorological theory fits com-

fortably on a moderately large blackboard. It consists

priiiarily of six equations of fluid dynamics which locally

predict the stat3 of the atrnosphere from the current state:

STATE(new) = f(STATE(old)).

By observing pressure, temperature and other

meteorologically interesting variables (in fact, only six

independent variables anJ a few thermolynamical constants

are involved) and calculating their rate of change, tha

stete equations allow extrapolation over short time periods

to new, or predicted, values (see the accounts in [0] or

[7)).

It is amusing that the first attempts at a

meteorological theory were directed toward an explanatory

(9 theory of the weather; this was attempted by ancient Greek

philosophers. But predicting the weather in the vicinity

DeMillo and Lipton DRAFT 6-6

the Mediterranean Sea is not a very pressing concern. To

Europeans a thousand years hence, however, the state of the

weather was a subject of intense interest -- crops, harvests

of fish, and trade routes depended on the vagaries of the

less temperate climate. It is in the transition from

Aristotle's speculation concerning the nature of the winds

to the modern large-scale calculations that give rise to

daily forecasts that there is a lesson for software

forecasting.

The first stn]e in predictin] weather most likely took

th3 form of attemptin] to codify the "portents" of change:

"They...were not so muzh concerned with explaining why

weather happened as they were in predicting it, and [the

early Euirope4ns] gradually built up a huge folklore ani

literature of portents -- the unseasonable migration of

birds, hPiernation of wild beasts, unusual sexual behavior

of farm animals, color of the sunset,..." ([5, p. 123).

SiJch understanding is entirely qualitative, and althoujh it

is tempting to try, building a quantitative, predict.ve

theory by improving on the portents is not productive. What

was needed in meteorology was, first, a proper concept of

primary data. Not until the middle of the seventeenth

century was there a means to observe atmospheric temperature

and pressure. Measurements by themselves told little about

climate beyond what was obviously revealed directly by the

observation (e.g., "It's cold out therel") It was after New-

S) ton (and later Bernoulli, Euler and Boyle) that a coherent

fluid mechanics began to emerge.

"'"Al. l 11 ...i |

DeMillo and Lipton DRAFT 6-7

It took nearly two hundred years to get from Bernoulli

to the six equations of state for the atmosphere. These

equations are, however, analytically intractable. The only

hope of obtaining high quality quantitative predictions of

the weather lay in massive computation. A proposal made by

Richardson in 1922 involved the hand calculation of such

nonlinear systems of equations by numerical techniques that

are close to what is used today [7]. Without computers,

however, Richardson could only speculate on the actual

nechanism of carrying out the necessary calculations:

[Richardson] describes a phantasmaiorical vision
of the "weather factory" -- a huge organization of
specialized human computers, housed in so'.ething
like Albert Hall, directed by a mathematical con-
ductor perched on a raised pulpit, and communicat-
ing by telegraph, flashing colored lights, and
pneumatic conveyer tubes...In this fantasy, he
estimated that, even using the newfangled desk
calculators, it would take about 54,000 human
automata just to predict the weather as fast as it
actually happens in nature. Richardson's preface
concludes with a rather wistful but prophetic-
statement: 'Perhaps someday in the dim future it
will be possible to advance the computations
faster than the weather advances and at a cost
less than the saving to mankind due to the
information gained. But that is a dream' ([5], p.
138).

The nearly simultaneous advance of sophisticated

numerical analytical techniques and high speed digital com-

putation allowed the fulfillment of Richardson's dream in

essentially its original form.

The characterizing features of modern meteorological

forecasting are that, first, extensive primary data is

DeMillo and Lipton DRAFT 6-8

gathered, second, accurate microscopic theories of

atmospheric behavior are available, and, third the

microscopic prediction -- obtained from the local data --

are pieced together using massive computation.

A DIGRESSION ON MEASUREMENT

Since measurement of atmospheric pressure and tem-

perature enter into our meteorological analogy, we should

digress for a moment to consider the notion of measurement

of software. The remaining papers in this collection refer

to software "metrics". The term metrics refers to "indices

of merit that can support quantitative comparisons and

evaluations..." Is]. In the context of predictive model-

ling (that is of predicting the future from the past), it is

more convenient to think in terms of observable software

properties -- particularly those that can be numerically

characterized and objectively recorded -- in other words, to

think in terms of measurements instead of metrics. The

distinction is not totally pedantic. There is a rich theory

of measurement that guides the development of other models

[9,10,11,121, and most importantly can be used to insure

that there is a precise sense in which hypotheses that are

formulated about the measured quantities are meaningfull

By a measurement is meant the assignment of numbers to

~') represent properties of material systems; since by a system

we mean a collection of objects or events, the properties of

DeMillo and Lipton DRAFT 6-9

the system are given by relations between the

objects/events. For reasons of intellectual economy a

scientist usually isolates one aspect of the system to

study; that is, he focuses on one relational system. So, a

measurement -- an assignment -of numerals to objects or

events according to certain rules [9] -- can be defined to

be a mapping f from a relational system (A,R), where A is a

set and R is a binary relation defined on A, to a set of

numbers. Since the numbers "represent" the relation, we

should insist that:

aRb iff f(a) > f(b),

whenever a an,] b are objects in A. more concisely,

measurements are defined to be homomorphisms that preserve

certain basic relations.

Thus, a basic measurement of, say, temperature is

obtained by the assignment of a number by a well-defined

rule (e.g., the height of fluid in a standard thermometer).

This homomorphism is not uniquely defined, however. It is

*possible -- and cotamon -- to define differing scales for

measuring temperature. The scientifically meaningful

statements that can be made about temperature do not depend

on the scale; that is, they remain valid under rescaling.

Just which resc3lings are allowed depends on the properties

of the relational system (A,R). Similarly, scale types can

(') be characterized by the admissible rescalings as summarized

in Figure I (see [101).

DeMillo and Lipton DRAFT 6-10

ADIISSIBLE SCALE TYPE EXAMPLE
TRANSFORMNTI ONS

6(x) = x absolute census counting

4(x) = ax ratio time interval length
a>0

d(x) = ax+b interval time, temperature
a>0

x > y implies
4(x) > 6(y) ordinal preference

d is 1-1 nominal labels

Fi3ure 1. Common Rescalings

Strictly speaking, an empirical statement is meaningful

provided its truth is invariant under an admissible trans-

formation. We can safely assert that 100 degrees C is the

boiling point of water, since the statement is true under

the rescaling a = 9/5 and b = 32. It makes no sense to

assert that the temperature on March 15 is twice the tem-

perature on November 4, since temperature is not defined on

a ratio scale -- the ratio of temperatures depends on the

scale and is therefore not invariant under the rescaling.

As a warm-up, let's look at some empirical statements

about software.

I. The lenjth of Program A is at least 100.

(- I1. Program A Is 100 lines long.

III. Program B took 3 months to write.

DeMillo and Lipton DRAFT 6-11

IV. Program C is twice as long as Program D

V. Program C is 50 lines longer than Program D.

VI. The cost of maintaining Program E is twice that of

maintaining Program F.

VII. Program F is twice as .maintainable as Program E.

Statement I does not make reference to a particular scale,

so it does not make sense, whereas Statement II does make

sense. Similarly, Statesment III is a perfectly reasonable

factual statement. If the expected scales are provided for

Statem.ents IV and VI, they are meaningful, but as written

they are technically meaningless. Statement V, however

refers to an ratio scale, on whicli intervals make sense.

Finally Statement VI forns a ratio on an ordinal scale,

which is meaningless.

Froin the standpoint of mcsaure~nent theory, many of the

derived measurements of software that have been proposed

[13] are meaningless.

Example 1. Programming Effort Equation

The total effort E in number of man months is

E = 2.7v + 121w + 26x + 12y + 22z - 497.

The interpretation of the variables and their scales types

are given in the following table.

DeMillo and Lipton DRAFT 6-12

VARIABLE INTERPRETATION SCALE

v number of instructions ratio
w subjective complexity ordinal
x no. external documents absolute
y no. internal documents absolute
z size in words ratio

This example illustrate a common shortcoming of current

attempts at fundamental and derived measurements. Not only

is the equation dimensionally inconsistent (no. of

docunents + no. of instructions + words + complexity 7 man-

months), it does not rescale: the truth of the equation

cannot be invariant under the required transformations.

Example 2. Another Programming Effort Equation

The total effort E in man-months is

E = 5.2(L**.91).

In this equation, L is the program size in thousands of

lines of code, so that both E and L are expressed in a ratio

scale. But the mesurement is not invariant under the trans-

formation L -- > aL' and so is meaningless.

Example 3. Life Cycle Cost

A basic measurement that does satisfy the requirements

of measurement theory is the equation for life cycle cost in

dollars Lt, expressed as a function of the cost in man

years, M,

AD-A087 412 YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE F/6 9,2
DRAFT SOFTWARE METRICS PANELS FINAL REPORT. PAPERS PRESENTED AT--ETC(U)
JUN AS A J PERLIS. F 6 SAYWARD, M SHAW N00014-79C-0672

UNCLASSIFIED RR-182/80 NL

2 4 flfllflfflfllfl ll
mhmhommhhml,
mmhhhmhmmm
Emhmhhhhhhmuo

1111 _ Jll!2.2

;14101112.

"1_.25 .

MICH(QI-OPY HitI I~I 1S I CHAR 1

NN I)(P ~ HL AL 0 IAN I It)[) A

DeMillo and Lipton DRAFT 6-13

and the average cost per man year, C:

L = MC.

Example 4. Error Seeding

The technique of introducing artificial errors into a

program, testing the program and determining the ratio of

seeded to natural errors can be used to estimate the number

of initial errors in a program, by the equation

4 = ST/C,

where N is the estimate of the initial number of errors, S

is the total number of errors sampled, T is the number of

*tagged" or seeled errors and C is the number of errors in

common in the counts S, T. Since the only admissible trans-

formation is the identity, the equation is technically

meaningful.

As a guide to fundamental measurement in software

forecasting measurement theory suggests a more thorough

study of the underlying relations to be measured. In

particular, If the underlying mechanisms are to be exposed,

the most basic methodological analyses suggest that it is

prudent to at least determine the scale type first. At

least that leads the investigator to propose and experiment

on meaningful hypotheses.

DeMillo and Lipton DRAFT 6-14

REALISTIC FORECASTING GOALS

Examples I and 2 of the previous section illustrate a

good deal of what is wrong with current approaches to

software metrics. Not only do-the equations suffer from the

technical defects cited above, they are also unlikely can-

didates for useful laws: they are too simple, The number

and quality of interactions that must take place to produce

a software system mitigate against a forecasting problem

that can be easily solved on a hand calculator. The

forecasting models that are the most realistic are also the

most demanding in terms of computation and data gatherinj.

For example, the controversial world dynamics model of

Forrester [141 requires well over 500 pieces of primary data

and massive computations.

There are two relevant approaches to forecasting that

deserve our attention here. The first approach is the clas-

sical econometric time-series approach to forecasting [15].

In this approach one looks for statistically meaningful pat-

terns in past data and uses these patterns to predict future

patterns. It seems to us that this approach is well-

developed and has been applied with some success to certain

kinds of software lifecycle modelling [15].

From the standpoint of basic research, however, the

traditional forecasting approach is not very satisfying,

since it is an admission that the underlying mechanisms have

not been understood. Returning to the meteorological

analogy, it is an attempt to extend the portents. But that

DeMillo and Lipton DRAFT 6-15

seems to be the stage of our current understanding of the

software lifecycle.

The exact approach to forecasting seems to require many

more insights into the various facets of the software

lifecycle than we currently.have at our disposal. Rather

than wait for the software equivalent of Newton (or Galileo,

for those who believe that we cannot even measure tem-

perature), we might try to use large-scale computation to

build upon the primary data that wa can collect. It should

be possible to partition a wide variety of programming tasks

into discrete, classifiable subtasks that are repeated anew

for each project. We can imagine, for example, a catalog of

subtasks (such as terminal handlers, hash table routines,

and report writers) which are common in various applications

software. Notice that we do not claim that these are "off-

the-shelf" components -- we merely claim that they must be

recreated in approximately the same form for each new job.

This catalog will be quite extensive, but it will be concep-

tually simple to structure and use.

The principle data gathering activity is to determine

the cost estimates for each of these subtasks. These costs

are influenced by many factors, including the potential

application, the skill and experience of the programmers and

the restrictions imposed by the programming environment.

There are many sources for such estimates. First, there is

a great deal of historical data which can be carried forward

(D [191; after all we do have considerable experience with

software projects and this experience can be codified.

DeMillo and Lipton DRAFT 6-16

Second, we have expert advice concerning the cost of the

projects. Third, experimentation can be carried out.

Fourth, the cost estimation is from managed projects so

feedback can be used to correct prior estimates.

If the data on the primitive tasks that make up the

software system is reliable, then the task is to "piece

together" a forecast of the total system cost by large-scale

computations. By "reliable" we mean that the measurements

have an accurate mean and small standard deviation, since in

that case the Central Limit Theorem [18] guarantees that the

overall estimate will have a small error term (in fact one

that grows as the square root of the total number of terms).

It is important to distinguish in this approach between

using standard cost and estimation data and advocating the

use of "standardized software components". Perhaps an

analogy to a more familiar cost forecasting problem will

make the point more cli arly. To estimate the cost of a

house, a contractor will consult extensive data sheets on

the cost of installing doors (how big?, how many?) and the

hundreds of other basic components of a dwelling. These are

not prefabricated items, they must be constructed completely

from basic specifications and customized for the task at

hand, but they are enough alike to permit an accurrate

assessment of the expected cost of construction. A cost

estimate from a builder is pieced together from such

estimates.

() Now, it is entirely possible that this approach

requires inordinate overhead; but there is still room for

DeMillo and Lipton DRhFT 6-17

applying computational power to chip away at the forecasting

problem from historical data. Often, the scale which one

uses to assess the software project is even weaker than An

ordinal scale: often all that is required is a measure of

cohesion between software projects. A manager may only need

to know whether the current project is enough like

apparently similar projects which have succeeded (or failed)

to justify his decision. In this situation the computation

needed is a similarity analysis of the important project

factors. A large clustering analysis of projected software

tasks and historical data may provide such information [10].

The principle task in such an endeavor is to isolate the

important factors through data gathering and

experimentation.

SU*4ARY

We have argued that a major use of software metrics is

in the forecasting problem for software projects. By

analogy with weather forecasting, we may characterize the

current state of knowledge in software forecasting as the

gathering of "portents." While these may be useful and

sometimes decisive in project management, they are

prescientific and qualitative. Further, it seems very

unlikely that the portents can be developed into a useful

theory of forecasting. To develop scientific forecasting

(J tools a rational way of predicting the future from

historical primary data is required. It is also important

DeMillo and Lipton DRkFT 6-18

that the primary data and the measurements used to obtain it

satisfy some basic methodological requirements -- for exam-

ple, the hypotheses developed from the measurements should

be meaningful in the sense implied by mesurement theory.

Among the rigorous approaches to the prediction problem

we distinguish the statistical and the exact approaches. '3

specifically reject the notion that such complex phenomena

as software lifecycles can be dealt with in a global way

using conputationally simple "laws". The statistical

approach, seeking to predict future events on the basis of

historical patterns, seems to be an attractive short ranje

approach to the forecasting problem. There is certainly an

extensive body of theory from econometrics and related areas

which can be broujht to bear on software forecasting.

Unfortunately, the statistical approach is a recogniton that

the underlying mechanisms are not understood. .3 turn,

therefore, to the exact approach. In the exact approach a

great deal of effort is spent in attempting to understand --

or to at least quantitatively assess -- the nicrospocic

prediction problem. The goel of the exact method is to be

able to apply largescale computation to many micro-

predictions to synthesize a quantitative forecast. Thsre

may even be useful aggregations of statistical and exact

techniques which give forecasting models. In both

approaches, data gathering is an essential activity; it is

therefore important to settle on the fundamental

i 0 measurements to be performed on the software.

DeMillo and Lipton DRAFT 6-19

REFERENCES

(1] Olaf Helmer and Nicholas Rescher, *On the Epistemology
of the Inexact Sciences," Rand Corporation Report No.
R-353, February, 1950.

[2] Alan Perlis, Fred Sayward, and Mary Shaw, Unpublished
notes on software metrics, April 1980.

[3] Tim Standish, Notes on Software Metric and ADA, January
1980, Las Vegas, Nevada meeting of ONR Software Metrics
Group.

[4] Jim Browne, "A Philosophy and Justification for
Empirical Software Engineering and Software Science,"
Unpublished Notes 9/13/79.

[5] R. DeMillo, R. Lipton and A. Perlis, "Social Processes
and Proofs of Theorems and Programs, Communications of
the ACM, May 1979.

11] Philip Thoupson, "The Mathematics of Meteorology," in
Mathematics Today, edited by Lynn Steen, Springer-
Verla3, 1979, pp. 127-152.

[7] Molly Gleiser, "The First Man to Compute the Weather,"

Datamation, June 1900, pp. 1090-184.

(8] Alan Perlis, Fred Sayward and Mary Shaw, unpublished Notes.

t9] Fred Roberts, Meaurement Theory, Addison-Wesley, 1979.

[10] Michael Anderberg, Cluster Analysis for Applications,
kcademic Press, 1973.

[11] Norbert Wiener, "A New Theory of Maasurement: A Study
in the Logic of Mathematics," Proceedings London
Math. Society, 1919, pp. 181-205.

[12] D. Krantz, et al., Foundations of Measurement, vol. I,
Academic Press, 1971.

(13] Data and Analysis Center for Software, "Quantitative
Softwqare Models, MArch 1979.

[14) J. Forreseter, World Dynamics, 2nd Edition, MIT
Press.

[15] Robert Pindyck, Econometric Models and Economic
Forecasts, McGraw-Hill, 1976.

[161 L. Putnam and A. Fitzsimmons, "Estimating Software
Costs," Datamation, September, October and November
1979

DeMillo and Lipton DRAFT 6-20

- ~ [is] WV. Feller, An Introduction to Probability Theory
and Its Applications, Volume I, Wiley, 1968.

K.0

Controlling Software Development Through the Life Cycle Model 71

by A. Perlis, Yale University

1. Introduction

Software is more than "source code." Software is used as a generic

term for all of the stages gone through in tailoring a program (or programs)

to solve some particular problem. The process is non-terminating and the

product, software, is evolutionary and shaped both by the nature of its

use and the intent of its design. Specification of software is generally

incomplete and arrives at a satisfactory state through evolution and use.

Software is subject to a perpetual tension: Being symbolic, it can

be perfected, guaranteed, arbitrarily extended, reproduced at almost no

cost, completely understood, perfectly managed and eternal. Being symbolic,

it can be easily changed, adapted, mishandled, generalized, altered by use

and discarded. Far from being reproducible at no cost, the replication of

software induces significant extra cost in maintenance and replacement no

matter who is responsible for these two activities.

If by software we mean program, every piece of software is (a representa-

tion of) an algorithm. Hence the results of the study of algorithms in

computer science should suggest methods for controlling and improving

software. To a limited degree, computer science has already helped. But

the behavior of software is different from that of algorithms. Comparatively

we observe:

(1) Software is rarely as precisely specified as algorithms: It

is often pointless to speak of software as a map from domain to range and

to study its computational complexity.

(2) Unlike algorithms, software changes its intent, to say

nothing of its mechanisms, while under specification, design, construction

and use.

7-2.

(3) Software is generally huge, algorithms are described as

being precise. Huge objects get that way by processes of accretion and

are rarely characterized as being thereby precise.

(4) Software is managed (or mismanaged), algorithms are created,

perfected and proven correct.

Issues of performance over a wide range of data may force treatment

of some algorithms as software: One speaks of an LP package, not merely

the simplex algorithm.

Standardization may allow some software to be treated algorithmically

(even as hardware), i.e., the recently announced chip for supporting

connection of a processor to the ether net.

It seems reasonable to fix upon a model for software development in

which the dynamics of software plays a significant role. The chosen model

is the life cycle model in which software is seen as passing through seven

stages:

(1) Requirements Analysis

(2) Specification

(3) Design

(4) Implementation

(5) Testing, Verification and Integration

(6) Maintenance and Enhancement

(7) Replacement and Retirement.

In isolation, these stages occur at progressively later times but feedback

from a stage to an earlier one may occur at any time. Revision of specification,

7-3.

of demand, alteration of requirements arising from use, change in environment

and erroneous implementation may interrupt the flow of normal development

of spawn sub-processes having their own life cycles.

What are the parameters of flow that will enable us to predict and

control the behavior and performance of software as it passes through its

life cycle? We must be careful that we not let the symbolic nature of

software lead us to expect perfectible methods of prediction and control.

Nevertheless, we seek methodologies within whose adherence questions can

be asked whose answers will support quantitative comparisons and evaluation

of software. Software metrics aid in making choices among options that

arise in the life cycle.

2. The Life Cycle

The software life cycle captures one aspect of the evolution of software.

The seven stages are attained by all software, but in a complex manner as

a set of processes executing overtime. To capture the diversity of process

behavior, one is led to think of this passage through the life cycle as the

set of execution states of a computation on a computer -- another name for

which is the software environment. What plays the role of the instruction

code on this computer? We do not yet know this instruction code 3ther than

vaguely. However, if we attempt to epitomize software evolution, the set

of actions we describe and thereby perform on a piece of software is an

example of a program for that computer. The life cycle is the list of

the gross procedures we must expect to perform.

The developing interest in software environments is understandable. The

proper role of the software environment is much more than a catch-all of

7-4.

interpreters, source-language editors, debuggers, etc., it is precisely

the computer milieu in which software exists as it negotiates its life

cycle. One should not underestimate the importance of facile manipulation

within a (real) computer of software by functioning software enfironments

at every stage of the former's life cycle. It is in this manipulation

that the symbolic nature of software becomes a matter of critical importance,

first to control and then (ultimately) to automate the production of software.

3. Issues in Life Cycle Control

In the introduction, a set of typical questions was given associated

with each life cycle stage. No questions were assigned to the requirements

phase -- the reader can undoubtedly supply a generous list. At each stage

the questions

Is it time to go to the next stage?

Is a feedback to an earlier stage (which one?) needed?

must be answered. Sometimes it is appropriate to answer both positively

and thereby spawn another software development process.

Let us consider the separate stages in more detail.

Specification

We know what function the software is to perform and have some suggestions

on how the functions are to be performed. We are interested in determining

(estimates of):

(1) Feasibility. With the resources available (manpower and

time) can the software be completed sufficiently before its predicted

7-5.

obsolescence to warrant its creation.

(2) Generalizability. Can the problem be generalized so that the

software becomes more feasible by either or both postponing obsolescence

or reducing resource requirement.

(3) Competition. Is the software so critical or the proper

design so unclear that competing efforts are worth supporting.

Design

At this stage a detailed formal statement of the problem to be solved

and its solution have been prepared, including a development plan for every

stage of the life cycle. We are interested in determining:

(I) What machine configuration to use?

(2) What language to use?

(3) Is it possible to incorporate previous work or must everything

be built from scratch?

(4) How will the availability of tool X affect factor Y?

(5) How close to its limits is the system expected to run?

(6) What are the potential future enhancements?

(7) Should the system be all encompassing from which subsystems

are carved out as needed, or should the system be a base from which specific

systems are built?

Implementation

At this stage there are some questions which need be answered before

implementation begins and others which arise during implementation. They

Include:

_ _'

7-6.

Before: (1) What developmental technology should be used? Should

the system be built all at once or should it be

constructed through a sequence of executable

prototypes?

(2) What programming discipline should be used? Chief

programmer? Cottage industry?
During
and after: (3) Is the project on schedule?

(4) Is the project on the budget?

(5) Is the implemented code correct? If not, how close

is it to meeting the specification?

(6) What is the quality of the implemented code? Is

it understandable? Will it be maintainable and

enhanceable?

Testing

At this stage, the general question to be answered is: "Does the

implementation meet the specification?" This usually reduces to questions

concerning the implementation's functionality, performance, and useability.

The decisions to be made include:

(1) Should testing be done top down or bottom up?

(2) Of the available methodologies for testing functionality,

performance, and useability, which ones should be used?

(3) What levels of satisfactory testing are sufficient?

(4) How will subsequent error reports be handled?

(5) How well does the testing environment approximate the

execution environment?

(6) How well does the software integrate into the larger system

of which It is a part?

7-7.

Maintenance and Enhancement

Maintenance is similar to testing but different in that the software

execution environment has changed from a controlled testing environment

to the actual user environment. Enhancement, on the other hand, is a

post-release augmentation of the system specifications to meet unsupplied

and unforseen demands. These two very different activities are often

linked because they result in a re-release of the system. Note, however,

that enhancement causes a feedback cycle of greater distance than does

maintenance. With this view, questions concerning maintenance can be

thought of as questions concerning testing (see above). Questions con-

cerning enhancement include:

(1) What is the cost of the enhancement? Is it worthwhile?

(2) What is the re-release strategy?

(3) Will the enhancement speed up or delay replacement?

(4) Will the enhancement disturb or destroy the logical clarity

of the system?

Once it has been decided that an enhancement should take place, there is

an automatic feedback to the specification life cycle stage.

Replacement and Retirement

Among the questions asked when considering replacement or retirement

of a system are:

(1) Has the problem outgrown the software?

(2) Has technology moved beyond the software?

(3) Has a critical support resource for the system become

unavailable?

7-8.

(4) Would it cost less to redesign and rebuild the system than

to maintain and enhance the system?

(5) How should the system be phased out?

(6) Do the benefits gained outweigh the costs incurred from

changing the language in which the system is written? Changing the machine

on which the system runs?

(7) What are the requirements for the replacement?

(8) What software is affected by its retirement?

What methodologies grease the passage of software through the life

cycle? One might be tempted to argue that it is poor strategy to

overdesign and build software with great care for eternal use. Experience

shows that some software attains a perfection of design and construction,

a complexity of function and a magnificence of size that it assures its

own future. The software shifts the burden of evolutionary costs to

the milieu. Ultimately the milieu will reject the software -- but the

time of retirement can often be delayed considerably. Two methodologies

seem attractive: careful use of prototype systems and use of high order

languages (HOLs).

4. Prototypes

There are two choices for system development called the "pre-

structured" method and the "prototypical" method.

The pre-structured method is the traditional approach in which the

final system language, data structures, control structures, and modulari-

zation are fixed very early in the life cycle, usually in the design

7-9.

phase. The pre-structured choices influence enormously the direction

of the later life cycle stages and tend to make significant design changes

difficult and expensive and, hence, resisted. Nearly all current and past

software has been developed using the pre-structured approach.

This method forces a view of software as being "hard," since the

costs of change tend to become enormous. Metaphors emphasizing the

palpability, the material-like nature of software dominate; that which

epitomizes software -- its "soft" character -- is systematically avoided.

Management techniques and discipline enforcing methodologies play a key

role in the life cycle passage.

In the prototypical approach, on the other hand, the software is

seen as being developed through a sequence of executable prototypes

with increased functionality, more and more implementation detail and

alternative designs being the rationale for the sucessive prototype

systems. Here the design evolves with the implementation and the designer

has the advantage of always having an executable model to support design

decisions. In a sense the prototypical approach, by "compressing" any

single life cycle time span, allows many passes through the life cycle with

more and more complex models of the software. Although the potential

advantages of using the prototypical approach to software development have

only recently begun to be recognized, the value of executable models has

long been recognized in other disciplines, e.g., the value of rapid and

flexible change has been recognized as crucial in evolutionary success of

the MAXIMA system [).

Successor prototypes have an important role to play in identification

7-10.

of enhancement possibilities and their costs. Their existence provides

a source of executable software "history" that aids in maintenance activity

and broadens the corps of specialists that must support software "in the

field."

These two development approaches differ radically in the language

parameter. In the pre-structured method resource efficiency dictates that

the final implementation language be chosen early and be the only language

used. Most often this language is a computer-oriented language. In the

prototypical approach fast and flexible implementation permits, even

dictates, that an interpretive language be used for the prototype systems.

For it is interpretation, not compilation, which permits incomplete

programs and quick response to changes in both control and data structures.

Later, for efficiency reasons, some prototype system may require (partial)

translation to a language that husbands machine resources better.

The chief question that must be answered is, "In view of the total

life cycle cost which approach is more cost effective?" Some advantages

and disadvantages of the methods which must be analysed in attempting to

find an answer to this question are:

Pre-Structured Advantages

(1) Using one language throughout requires less training of

personnel.

(2) Since the design is more or less fixed early in the life

cycle, one can concentrate on finding an efficient implementation, proving

it correct, arranging personnel schedules, etc.

..') 1

/-il1.

Prototypical Advantages

(1) An executable prototype permits the design to evolve,

often in ways not envisioned in the initial requirements.

(2) It is natural to explore competing implementation strategies.

(3) It is often easy to generalize the requirements and quickly

reflect them in a new prototype system.

(4) Lower average length of life cycle feedback cycle.

(5) Early prototype systems are potential starting points for

evaluating, understanding and performaning future maintenance and enhancement.

Pre-structured Disadvantages

(1) Always working with a static, unproven and unobserved design.

(2) Changes in the requirements often cause massive redesign of

the system.

Prototypical Disadvantages

(1) Separate languages for the prototypes and the production

systems implies a need for either more or for higher qualified personnel.

(2) The inherent inefficiencies of interpretation must be

overcome in going from the final prototype to the production system.

(3) There is an eighth possibly costly) life cycle stage of

translating from the final prototype to the production system.

Except in extreme cases, for today's software projects, the benefits

of the prototypical approach outweigh its disadvantages while the reverse

Is true of the pre-structured approach. This is supported by the following

metaphorical thesis:

"1)

7-12.

The navigation of a software system through the life
cycle is a realtime asynchronous process. The system
must respond rapidly to the interrupts which will arise
due to changing requirements, error corrections, etc. The
ease of response materially diminishes the future cost of
the software system.

Both development approaches start with flexible models during the

initial "at the blackboard" requirements analysis and specification

stages. But soon the schism occurs. In the pre-structured approach the

informal design is massaged to fit the chosen language -- in the proto-

typical approach, the informal design is directly reflected and studied

in a prototype system. In the pre-structured approach commitment comes

early and change is not only painful but often prohibitive -- the prototypical

approach is based on rapid easy design changes of almost any kind.

A bias toward the prototypical approach can be expressed in the

following informal metaphorical hypotheses:

The prototypical approach forces the inhibition of
dramatically fewer life cycle interrupts than the
pre-structured approach.

The response time to life cycle interrupts is
dramatically faster under the prototypical approach
than under the pre-structured approach.

The prototypical approach leads to a more rapid development of soft-

ware, and the developed software is more reliable, easier to maintain,

and easier to enhance.

5. Programing Languages

What factors determine which language should be used for the software
project? In general, how do we differentiate between programming languages

and how do we connect programing languages to the tasks which are to be

7-13.

programmed in them?

Many important language and project dependent parameters have been

identified. Numerous studies and controlled experiments have been and

are being conducted in an effort to determine what, if any, distinguishable

effects language choice has on life cycle costs. Nearly all of these

studies have centered on comparing languages belonging to what can be

called the ALGOL class of languages.

One can be sceptical concerning the conclusions of these works --

mainly because for every result which says, for example, "maintenance

is cheaper in language X than in language Y" one can find another result

saying "maintenance is cheaper in language Y than in language X." This

is not surprising. Indeed, it supports a basic hypothesis:

For any two languages in the same language class (see
below) in the long run there is no significant financial
gain in using one language over another -- the important
parameters are not linguistic but depend on other issues,
such as personnel training, software support, familiarity,
etc.

There are four classes of language that are in heavy use in today's

software: (1) Machine assembly language.

(2a) ALGOL-like, such as ALGOL 60, FORTRAN, COBOL, and PASCAL.
(2b) ALGOL-like with tasking such as JOVIAL, ALGOL 68, CMS-2,

PL/I, and ADA.

(3) Interpretive languages which operate on data structures in
parallel such as APL and LISP.

The hypothesis does not mean that, for a given task, any language in

class 2b, for instance, Is as good as any other language in 2b and one

chooses just to suit fancy. On the contrary, there are Intra-class

language differences. However, the relevant social, educational, management,

7-14.

and emotional issues dominate the intra-class language differences when it

comes to dramatically reducing life cycle costs. Experiments on hypotheses

such as

"Maintenance and enhancement is cheaper in ADA than in
JOVIAL," and

"Software written in PASCAL is more reliable than software
written in FORTRAN"

must lead to inconclusive interpretations.

Clearly this is not the case when comparing languages at the interclass

level -- e.g., there is hardly a software manager who would deny that

using a class two language rather than assembly language dramatically

reduces life cycle costs. This suggests a second hypothesis:

With proper integration into the life cycle, a dramatic
decrease in costs can be realized by using a language
from a higher level class.

How does one establish such claims? The general lack of theoretical

models of the life cycle and programming language characteristics would

seem to rule out formal studies.

A proposal has been made by Perlis and Sayward to investigate the use

of program mutation as a means of relating programming languages to life

cycle costs. A program's mutants are reasonable alternative programs and

they have been used as a basis of the mutation analysis testing method. It

has been shown experimentally that the level of confidence in the mutation

test for FORTRAN programs is proportional to the number of mutants

considered in the test. That is, the larger the number of mutants considered,

the larger the number of potential errors ruled out.

7-15

It is not unreasonable to relate the error proneness of a programming

language to the influence on life cycle costs of using the language since

error proneness materially affects all later life cycle stages. Consequently,

Perlis and Sayward put forward two hypotheses

For a given task, to obtain a given level of testing confidence,
there is no significant difference in the number of mutants which
must be considered for programming languages in the same
language class.

For a given task, to obtain a given level of testing confidence,
there is a significant difference in the number of mutants
which must be considered for programming languages in different
language classes. In particular, there is a dramatic reduction
in going from class one to class two and in going from class
two to class three.

Progress in programming languages is difficult to characterize, but one

trend is clear: Languages show increased ability to produce contextual

programs that execute but ignore arbitrary sets of details until such

time as they become relevant to a subsequent program 'refinement'. As

our collective experience and insight has grown some of these sets have become

'canonized' and their treatment hardened by syntactic and semantic language

fixes. We have come to order languages from low to high strictly on the

cardinality of their sainthoods.

However it is not cardinality but ease of beautification that matters.

This is Teitelman's principle.

If we append to that principle the observation that the invention of

good notation or suggestive syntax is found rarely in humans, Occam tells

us that, over the long run, that language is highest whose syntax and

semantics is simplest subject to Teitelman's principle. Then our machine

7-16

assembly languages should surely be highest, but aren't. Why? Backus

says it's because our machines are inappropriate -- and he's probably

right.

The appropriate machines are those which best fit the languages of

class 3, not those of class 2. These machines will not be in large supply

for some time. Until then we must invent processors that can map a prototype

with the aid of data accumulated on its performance into an efficient

program in a lower class language.

Of course the above is hypothesis and experiments must be defined,

metrics identified that will support or reject this view of software

development.

Notes.

1. The questions arising in the life cycle process were developed jointly
with Fred Sayward and Mary Shaw.

2. The hypotheses concerning comparison of languages within and across
language classes and the prestructured versus prototype approach to
the development of systems are the joint insight of the author and
Fred Sayward.

3. References will be appended in the final copy of this paper.

()... 1 I. 1 1I - |

" 8-1

RESOURCE MODELS

Victor R. Basili
University of Maryland

It ii Important that we have a better understanding of the software

development process and be able to control the distribution of resources

such as computer time, personnel, and dollars. We are also interested in

the effect of various methodologies on the software development process

and how they change the distribution of resources. For this reason, we

are interested in knowing the ideal resource allocation, how it may be

modified to fit the local environment, the effect of various tradeoffs, and-

what changes should be made in the methodology or environment to minimize

resources expenditure.

There has been a fair amount of work towards developing different kinds

of resource models. These models vary in what they provide (e.g., total

cost, manning schedule) and what factors they use to calculate their estimates.

They also vary with regard to the type of formula, parameters, use of pre-

vious data, and staffing considerations. In an attempt to characterize

the models, we will define the following set of attribute pairs. They can be

characterized by the type of formula they use to calculate total effort. A

single variable model uses one basic variable as a predictor of effort, while

a multi-variable model uses several variables. A model may be static with

regard to staffing, which means a constant formula is used to determine

staffing levels for each activity, or it may be dynamic, implying staffing

level is part of the effort formula itself. Within the multi-variable

models, there are various subcategories: adjusted baseline, adjusted table-

driven, and multi-parameter equation. The adjusted baseline uses a single

variable baseline equation which is adjusted in some way by a set of other

8-2

variables. An adjusted table-driven model uses a baseline estimate which is

adjusted by a set of variables where the relationships are defined in tables

built from historical data. A multi-parameter model contains a base formula

which usei several variables. A model may be based upon historical data or -

derived theoretically. An historical model uses data from previous projects

to evaluate the current project and derive the weights and basic formula from

analysis of that data. For a theoretical model, the formula is based upon

assumptions about such things as how people solve problems. One last categori-

zation is that some models are macro models, which means they are based upon a

view of the big picture, while others are micro models in that the effort

equation is derived from knowledge of small pieces of information scaled up.

We will try to discuss at least one model in each of these categories.

Static single variable models - The most co=on approach to estimating

effort is to make it a function of a single variable, project size (e.g., the

number of source instructions or object instructions). The baseline effort

equation is of the form

EFFORT - a * SIZE
b

where a and b are constants. The constants are determined by regression

analysis applied to historical data. In an attempt to measure the rate of

production of lines of code by project as influenced by a number of product

conditions and requirements, Walston and Felix (1) at IBM Federal Systems

Division started with this basic model on a data base of 60 projects of

4,000 to 467,000 source lines of code covering an effort of 12 to 11,758

man months. The basic relation they derived was

E - 5.2L
9 1

where E is the total effort in man months and L is the size In thousands

of lines of delivered source code, including comments. Beside this basic

8-3

relationship, other relations were defined. These include the relationships

between documentation DOC (in pages) and delivered source lines

DOC - 49L1.01

project duiration D (in calendar months) and lines of code

D - 4.1L36

project duration and effort

D - 2.47E
35

and average staff size S (total staff months of effort/duration) and effort

S - .54E
6

The constants a and b are not general constants. They are derived

from the historical data of the organization (in this case, IBM Federal

Systems Division). They are not necessarily transportable to another organi-

zation with a different environment. For example, the Software Engineering

Laboratory (SEL) on a data base consisting of 15 projects of 1.5 to 112 thousand

source lines of code covering efforts of 1.8 to 116 staff months have calculated

for their environment the following set of equations (2):

E - 1.4L
94

DOC - 29.5L
92

D - 4.4L267

D - 4.4E
2 6

S - 2.3E
7 4

Some other variables, including other ways of counting code, were measured

by the Software Engineering Laboratory and the equations derived are given

here. Letting 'DL - number of developed, delivered lines of source code

(new code + 202 of reused code), M - number of modules, DM - total number of

) developed modules (all new or more than 20% new) we have

8-4

E - 1.58DL "9 6 E - .063M1 .18 6 E- .19DM1.0 , D - 4.6DL ' 28
E

33 2D 3 .26 3.D 92,
D - 2.OM" D - 2.SDM"3 , D - 2.OD " , DOC 35.7DL "

DOC i 1.5 17, DOC - 4.8DM'99

Most of the SEL equations lie within one standard error of the IBM

equation and since the SEL environment involves the development of more

standard software (software the organization has experienced in building),

the lower effort for more lines of code seems natural. It is also worth

noting that the basic effort-lines of code equation is almost linear for

the SEL--more linear than the Walston/Felix equation. Remember that the

project sizes are in the lower range of the IBM data. Lawrence and Jeffery (3)

have studied even smaller projects and discovered that their data fits a

straight line quite well, i.e., their baseline effort equation is of the form

EFFORT - a * SIZE + b

where again a and b are constants derived from historical data. The impli-

cation here is that the equation becomes more linear as the project sizes

decrease.

Static multi-variable models - Another approach to effort estimation

is what we will call the static multi-variable model. A resource estimate

here is multi-variable because it is based on several parameters, and static

because a single effort value is calculated by the model formula. These models

fall into several subcategories. Some start with the baseline equation just

discussed based on historical data and adjust the initial estimate by a set

of variables which attempt to incorporate the effects of important product

and process attributes. In other models, the baseline equation itself involves

more than one variable.

8-5

The models in the adlusted baseline class differ in the set of attri-

butes that they consider important to their application area and development

environment, the weights assigned to the attributes, and the constants of

the baseline equations.

Walston and Felix (1) calculated a productivity index by choosing 29

variables that showed a significantly high correlation with productivity in

their environment. It was suggested that these be used in estimating and

were combined in a productivity index

I = i xi

where I is the productivity index, wi is a factor weight based upon the

productivity change for factor i and xi - +1, 0, or -1, depending on whether

the factor indicates increased, nominal or decreased productivity.

One model that fits into the single-parameter baseline equation with a

set of adjusted multipliers is the model of Boehm (4), whose baseline effort

estimate relies only upon project size. His set of attributes are grouped

under four areas: (1) product--required fault freedom, data base size,

product complexity, adaptation from existing software; (2) computer--execution

time constraint, machine storage constraint, virtual machine volatility,

computer response time; (3) personnel--analyst capability, applications

experience, programmer capability, virtual machine experience, programming

language experience; (4) project--modern programming practices, use of

software tools, required development schedule. For each attribute Boehm gives,

a set of ratings ranging from very low to very high and, for most of the

attributes, a quantitative measure describing each rating. The ratings are

meant to be as objective as possible (hence the quantitative definitions),

so that the person who must assign the ratings will have some intuition as

to why each attribute could have a significant effect on the total effort.

8-6

In two of the cases where quantitative measures are not possible, required

fault freedom and product complexity, Boehm provides a chart describing the

effect on the development activities or the characteristics of the code

corresponding to each rating. Associated with the ratings is a chart of

multipliers ranging from about .1 to 1.8. Another model which falls into

this category is the model of Doty (5). The Doty model, however, provides

a different set of weights for different applications besides two ways to

estimate size.

One model which falls into the category of adjusted table-driven is that

of Wolverton (6). Here the basic algorithm involves categorizing the software

routines. The categories include control, 1/O, pre- or post-algorithm processor,

algorithm, data management, and time critical routines. Each of these routines

has its own cost of development curve, depending upon the degree of diffi-

culty (easy, medium, or hard) and the newness of the application (new or old).

The cost is then the number of instructions by category and degree of difficulty

times the corresponding cost taken from a table. Another model of this type,

but more simplistic, is Aron (7).

The GRC model (8) Involves a set of equations derived from historical

data and theory for the various activities, several of which are multi-

parameter equations of more than one variable. For example, the equation

for code development is

CD .9773 x N1.2 58 3 e-.08953 * UEXP

OF x

where MMCD Is the baseline staff months for code development task group for

a subsystm, NOF - the number of output formats for a subsystem and Yexp

is the average years of staff experience in code development. It is worth

noting that size of the code is not a factor In this formula. Other formulas

_exist for the effort Involved :In analysis and del~n, system level testing,

8-7

documentation installation, training, project control, elapsed time and a

reasonable check for the total staff months for the project (MM1Ro)

= .0218 * ((2 + N) * ln(2 + NF))171
*PR0J OF OF

where NOF is as defined above.

Dynamic multi-variable models - Once an effort estimate is made, the

next question of concern is how to assign people to the project so that the

deadlines for the various development activities will be met. Here again

there are basically two approaches: the one empirical, the other theoretical.

Each of the methods discussed so far uses the empirical approach which tries

to identify the activities which are a part of the development process of a

typical project for their software house. Then, using accounting data from

past projects, they determine what percentage of the effort was expended on

each activity. These percentages serve as a baseline and are intuitively

adjusted to meet the expected demands of a new project. For example, in the

Wolverton,model total cost is allocated into five major subareas: analysis

cost (20% of total), design cost (18.7% of total), coding cost (21.7% of

total), testing cost (28.3% of total) and documentation cost (11.3% of total).

Each of these subarea costs are subdivided again, depending upon the activi-

ties in the subareas. In this way, each activity can be staffed according

to its individual budget. Allocation of time is determined by history and

good management intuition.

The theoretical approach attempts to justify its resource expenditure

curve by deriving it from equations which model problem-solving behavior.

In other words, the actual resource model lays out the staffing across time J

and within phases. We will refer to this approach as the dynamic multi-

variable model. It is dynamic because the model produces a curve which

describes the variation of staff ing level across time. The model is multi-

factor because it involves more than one parameter.

8-8

Two models in this category will be discussed which differ in the

assumptions they make. The first model, which is the most widely known and

used, is the Putnam model (9).

The model is based on a hardware development model (10) which noted that

there are regular patterns of manpower buildup and phase out independent of

the type of work done. It is related to the way people solve problems.

Thus, each activity could be plotted as a curve which grows and then shrinks

with regard to staff effort across time. For example, the cycles in the life

of a development engineering project look as follows:

PROTOTYPE RELEASECYCLE RELES
CYYCLE

PLANNING CYCLE
SPECIFICA-

TION CYCLE

MONTHS

Similar curves were derived by Putnam for software cycles which are: planning,

design and implementation, testing and validation, extension, modification and

maintenance.K

8-9

The theoretical basis of the model is that software development is a

problem-solving effort and design decision making is the exhaustion process.

The various development activities partition the problem space into subspaces

corresponding to the various stages (cycles) in the life cycle. A set of -

assumptions is then made about the problem subset: (1) the number of problems

to be solved is finite, (2) the problem-solving effort makes an impact on

and defines an environment for the unsolved problem set, (3) a decision removes

one unsolved problem from the set (assumes events are random and independent)

and (4) the staff size is proportional to the number of problems "ripe" for

solution. Because the model is theoretically based (rather than empirically

based) some motivation for the equation is given. Consider a set of inde-

pendent devices under test (unsolved problem set) subject to some environment

(the problem-solving effort) which generates shocks (planning and design

decisions). The shocks are destructive to the devices under test with some

dependent conditional probability distribution p(t) which is random and

independent with some rate parameter X. Assume the distribution is Poisson

and let T be a random variable associated with the time interval between shocks

Pr(T > t) - Pr (no event occurs in interval (o, t)) (1)

where t a o is the time of the most recent shock

letting p(t) be the conditional probability of a failure given that a

shock has occurred and X be the Poisson rate parameter, then

t
-X(/ p(r)dx)

Pr(T > t) - r (2)

and t

X(f px~dr)(3)
Pr(T t) 1 - •a p(x)dr)

and the p.d.f. associated with (3) is

f(t) - 7*p(t)*e' l (pax)dx), t o

8-10

This leads to the class of Weibull distributions (known in reliability work)

where the physical interpretation that the probability of devices succumbing

to destructive shocks is changing with time. Based upon observed data on

engineering design projects, a special case of (3) can be used

y f(t) - 1 - • "at 2 (4)

where p(t) - at (5)

and a - Aa (6)
2

Note that this implies engineers learn to solve problems with an increasing

effectiveness (i.e., familiarity with the problems at hand leads to

greater insight and sureness). Parameter a consists of an insight generation

rate A and a solution finding factor a. Equation (5) is a special linear case

bof the family of learning curves: y = a x

Equation (4) is then the normalized form of the life cycle equation.

By introducing a parameter (K) expressed in terms of effort, we get an

effort curve, the integral form of the life cycle equation

2
y a K * (1-e)

where

y is the cumulative manpower used through time t

K is the total manpower required by the cycle stated in quantitites

realted to the time period used as a base, e.g., man-months/month

a is a parameter determined by the time period in which y1 reaches

its maximum value (shape parameter)

t is time in equal units counted from the start of the cycle

8-11

S50

39Z of total effort used

td time

The life cycle equation (derivative form) is

2
1 -a t
y -2Kate

where y is the manpower required in time period t stated in quantitites

related to the time period used as a base and K is the total manpower required
1

by the cycle stated in the same
units as y 1

YUax

N\

td time

The curve (called the Rayleigh Curve) represents the manpower buildup. The

sum of the individual cycle curves results in a pure Rayleigh shape. Software

development is implemented as a functionally homogenous effort (single

purpose). The shape parameter a depends upon the point in time at which

8-12

1
y reaches its maximum, i.e.

a- /2td 2

where t is the time to reach peak effort. Putnam has empirically shown td

corresponds closely to the design time (time to reach initial operational

capability). Substituting for a we can rewrite the life cycle equation

as

y K2 * te
2/ td

td

The equations given are for the entire life cycle. To find development

effort only

take

y K * (1-e)
a t2

substitute for a - 1/ 2td2

y - K * (1-e(-t2/2td2)

then the development effort is time to td

2
y - K * (1-e(t /2td2))

K *(1-e)

- .3935K

or DE - 40% of LC effort

The life cycle and development costs may be calculated by multiplying the

cost for that cycle by staff year cost

$LC - K*MC

where MC - mean cost (in $) per man year of effort

K - total manpower (in man years) used by project

8-13

(Note: the equation neglects computer time, inflation overtime, etc.)

and

$DEV - MC * (.3935K)= .4 * SLC

Putnam found that the ratio K/(t2) has an interesting property. It

represents the difficulty of a system in terms of programming effort required

to produce it. He defines
D - K/(t 2

/td)

To illustrate how management decisions can influence the difficulty of

a project, assume a system size of K - 400 MY and td - 3 years. Then the

difficulty D - 400 / 9 - 44.4 man years per year squared.

Consider a management decision to cut the life cycle cost of the system

by 10%. Now, K - .9 * (400) - 360 MY and D - 360 / 9 - 40. This results

in a 10% decrease in assumed difficulty of the project. This decision

assumes the difficulty is less than it really is, and the result is less

product.

Now consider the more common case of attempted time compression. Assume

management makes a decision to limit the expended effort to 400 MY, but wants

the system in 2.5 years instead of 3 years. Now, K - 400 MY, td - 2.5 years,

and D - 400 / 6.25 - 64 (a 44% increase). The result of shortening the

natural development time is a dramatic increase in the system difficulty.

The Putnam model generates some interesting notions. Productivity is

related to the difficulty and the state of technology; management cannot

arbitrarily increase productivity nor can it reduce development time without

increasing difficulty. The tradeoff law shows the cost of trading time for

people.

In deriving an alternate model, Parr (11) questions the assumption of

(.1 the Rayleigh equation that the initially rising work rate is due to the linear

8-14

learning curve which governs the skill available for solving problems. He

argues that the skill available on a project depends on the resources applied

to it and that the assumption confuses the intrinsic constraints on the rate

at which ioftware can be developed with management's economically-governed

choices about how to respond to these constraints.

As an alternative to this assumption, his model suggests the initial

rate of solving problems is governed by how the problems in the project are

related, i.e., the dependencies between them. For example, the central phase

of development is naturally suited to rapid rates of progress since that is

when the largest number of problems are visible. Letting V(t) be the expected

size of this set of visible (available for solving) problems at time t,

Parr model yields the equation

V(t) Ae -yat

(1 + Ae-N at)((+ 1/)

where

a is the proportionality constant relating the rate of

progress and the expected size of the visible set

A is a measure of the amount of work done on the project

before the project officially starts

r is a structuring index which measures how much the development

process is formalized and uses modern techniques.

The curve represented by V(t) differs from the Rayleigh/Norden curve

for '(t) in two Important ways. The Rayleigh curve is constrained to go

through the origin; the Parr curve is not. Making Y'(0) - 0 corresponds to

setting an official start date for the project. Before that point, the

effort expended on the project is assumed to be minimal. In reality, there

is often a good deal of work done before that date, including such activities

J'" I

8-15

as requirements analysis and feasibility studies. In Putnam's environment,

these were handled by a separate organization and could be ignored. Another

factor that affects the problem space is past experience in the application

area, or even more tangible is the influence of design or code taken from

past projects. All of these have the effect of structuring the problem

space at the beginning, so that more progress can be made early. The Parr

curve accounts for this, the Putnam curve does not.

r..

8-16

* N

IN.

a /10

a 10
dd ' 0

'..

'a '. a

U ID

* .. '0 ~ '.

* 0 C

II

000

0 -c,"omv o lo*' 0 -'ao-vaw r

l*llmll" A- -:

8-17

A second distinction between the two curves is the flexibility of where

the point of maximum effort can come. By using a structuring index greater

than one, this point of maximum effort can be delayed almost to acceptance

testing afid still be able to drastically reduce effort before project com-

pletion. With the Rayleigh curve, a late point of maximum effort constrains

the curve to have a slow buildup and almost no decay at the end.

Parr does not say how to estimate the parameters for V(t) in terms of

data the project manager would have on hand. This is a problem in doing

resource estimation currently, but the model could use the existing resource

allocation schedule, based on early data points, to predict the latter part

of the curve. The Parr model is only currently being tested on real software

for the first time and the results are not yet in. The Rayleigh model, on

the other hand, has been used in many environments and has been quite successful

on the whole.

Single variable, theoretical - The two previous theoretical models may be

thought of as macro models in that the estimate of staffing levels relies on

process oriented issues, such as total effort, schedule constraints, and the

degree that structured methodology is used. Product oriented issues, such as

source code, are not a factor. Most of the other models are less macro

oriented in that they consider product characteristics, such as lines of code

and input/output formats. In this section, we will discuss another type of

theoretical model based upon l~wer level aspects of the product which we will

call a micro model. The particular model discussed here deals with the idea

that some basic relationships hold with regard to the number of unique operators

and operands we use in solving a problem and the eventual effort and time

required for development. This notion was proposed by Halstead as part of

- his software science (12). Here there is only one basic parameter--size--

measured in terms of operators and operands. The model transcends methodology

8-18

and environmental factors. Most of the work in this area has dealt with

programs or algorithms of module size rather than with entire systems, but

that appears to be changing.

In the language of software science, measurable properties of algorithms-

are

n number of unique or distinct operators in an implementation

n2 number of unique or distinct operands in an implementation
th

f ,J number of occurrences of the j most frequent operator,

j + 1, 2, .n1
th

f2,j number of occurrences of the j most frequent operand,

J -1, 2, . .n2

then the vocabulary

n of an algorithm is n -n1 + n2

and the implementation length is

N N 1 + N2

where
nn n

12 2n fijjZ flJ 2 j-l i- j-

Based only on the unique operators and operands, the concept of program

length N can be estimated as

N - n1 log 2 n1 + n2 log2 n2

where

N N

N is actually the number of bits necessary to represent all things that exist

in the program at least once, i.e., the number of bits necessary to represent

a symbol table. Over a large set of programs in different environments, it

has been shown that N approximates N very well.

8-19

To measure the size of an algorithm, software science transcends the

variation in language and character set by defining algorithm size (volume)

as the minimal number of bits necessary to represent the Implementation of

the algorithm. For any particular case, there is an absolute minimum length

for representing the longest operator or operand name expressed in bits. It

depends upon n, e.g., a vocabulary of 8 elements requires 8 different designa-

tors, or log 2 8 is the minimal length in bits necessary to represent all

individual elements in a program. Thus, a suitable metric for size of any

implementation of any algorithm is V - N log 2 n, called volume.

The most succinct form in which an algorithm can be expressed requires a

language in which the required operation is already defined and implemented.

The potential volume, V*, is defined as

V, - (N* + N* log (n* + n* where V - N log n
1 log2 1n 2 ~ lo 2

but minimal form implies N* - n* and N* - n* because there should be no
1 1 2 2

repetition. The number of operators should consist of one distinct operator

for the function name and another to serve as an assignment or grouping

symbol n- 2. Thus, V* (2 + n*) log (2 + n*) where n* represents the

number of different input/output parameters. Note: V* is considered a

useful measure of an algorithm's content. It is roughly related to the basic

GRC model concept of input/output formats.

The level of the implementation of a program is defined as its relation

V*to its most abstract form, V*, i.e., L - ' . L .& 1 and the most succinct

expression for an algorithm is a level of 1. V* - L x V implies when the

volume goes up the level goes down. Since it is hard to calculate V*, an

A
approximation for L, L is calculated directly from an implementation

A2n
L - .2L-.L. The reciprocal of level is defined as the difficulty, D - l/L,

n1N 2

12..... i ''''..i -

8-20

which can be viewed as the amount of redundancy within an implementation.

Based on these primitives, formulas for programming effort (E) and

time T) are derived. Assuming the implementation of an algorithm consists

of N selections from a vocabulary of n elements and that the selection is non-

random and of the order of a binary search (implying log2n comparisons for

the selection of each element), the effort required to generate a program is

N log 2n mental comparisons (this is equal to the volume (V) of the program).

Each mental comparison requires a number of elementary mental discriminations

where this number is a measure of the difficulty (D) of the task. Thus, the

total number of elementary mental discriminations E required to generate a

2
given program should be E - V * D - V/L - V /V*. This says the mental effort

required to implement any algorithm with a given potential volume should vary

with the square of its volume in any language. E has often been used to

measure the effort required to comprehend an implementation rather than produce

it, i.e., E may be a measure of program clarity.

To calculate the time of development, software science uses the concept

of a moment defined by the psychologist Stroud as the time required by the

human brain to perform the most elementary discrimination. These moments

occurred at a rate of 5 to 20 per second. Denoting moments (or Stroud's

number) by S, we have 5 ' S 4 20 per second. Assuming a programmer does not

"time share" while solving a problem, and converting the effort equation

(which has dimensions of both binary digits and discriminations per unit

E V2 Halstead empirically estimated S - 18 fortime) we get T a- - V*"
S SL SV*"

his environment, but this may vary from environment to environment.

Software science metrics have been validated in a variety of environments

but predominantly for module size developments.

(j

8-21

Other resources - In what has been stated so far, resource expenditure

and estimation have been predominantly computed in terms of effort. The

formula for cost may be a simple multiplication of the staff months times

the average cost of a staff member or it may be more complicated. It may

include some difference for the cost of managers versus the cost of

programmers versus the cost of support personnel whose role varies across

the life cycle (13).

The schedule may be derived based upon historical data, with effort

allocated to different activities based upon the known percentages or it

may be dictated by the model itself, as with the Rayleigh curve. However,

the dynamic models generate what they consider the ideal staffing conditions

which may not be the actual ones available. Thus, in fitting actual effort to

the estimated or proposed effort, some decisions and tradeoffs must be made.

Computer time is yet another resource. Unfortunately, none of the above

models treats this within the same formula. In general, they have a

separate formula for computer time again based upon computer use in similar

projects. These models vary from a simple table type model (6) to some

very sophisticated probability distribution based on reliability modeling

for phases of the development, such as testing (14).

Effect of resource model research - In general, modeling a process attempts

to explain what is going on in that process by making assumptions about the

underlying process and simplifying the environment by removing extraneous and

less relevant factors. Modeling presents a viewpoint of the process, in our

case the software development process or product by classifying various

phenomena, abstracting from reality and isolating the aspects of interest.

Resource modeling can be useful in several ways. It can be used for

initial prediction, i.e., given what we know or can guess about a project, it

6-22

can be used to predict the effort required to produce the product, the cost,

the staffing pattern, the computer time required, etc. The main point is to

discover relationships between some set of characteristics that we can estimate

or know and those resource elements we wish to find out about. It can be used

in predicting the characteristics of the next phase of development from the

current phase. We should be able to predict what should happen next, and if it

doesn't happen, why not; is it a sign of trouble, etc.?

The most important research use of resource modeling is that it should

give us insights into what is going on in the software development process.

We can study how different environmental parameters, such as changes in speci-

fications, the methodology or tools used, or the complexity of the requirements

can change the pattern of software development. We can use the resource usage

patterns to evaluate such things as methodology and tools and learn how to

better engineer future developments.

We can use resource data to evaluate our various models of the software

development process. For any model, does it explain our behavior and environ-

ment? Do the factors (parameters) agree with our environmental parameters and

are they calibrated correctly? In this way, we can refine our models of the

process and gain deeper insights into the qualitative and quantitative nature

of software development.

From the empirical models, we can learn what basic relationships exist

between various aspects of the software development process. We can learn what

factors affect the development process and what their effects are. From the

theoretical models, we can learn if there are better ways to understand the

underlying behavior of the process and test out some basic assumptions about

group dynamics with regard to software development environments.
|

8-23

References

(1) Walston, C. and Felix, C., A Method of Programming Measurement and
Estimation, IBM Systems Journal 16, Number 1, 1977.

(2) Freburger, Karl and Basili, Victor, The Software Engineering Laboratory:
Relationship Equations, University of Maryland Technical Report TR-764,
May 1979.

(3) Lawrence, M. J. and Jeffery, D. R., Inter-organizational Comparison of
Programing Productivity, Department of Information Systems, University
of New South Wales, March 1979.

(4) Boehm, Barry W., Draft of book on Software Engineering Economics, to be
published.

(5) Doty Associates, Inc., Software Cost Estimates Study, Volume 1,
RADC TR 77-220, June 1977.

(6) Wolverton, R., The Cost of Developing Large Scale Software, IEEE
Transactions on Computers 23, Number 6, 1974.

(7) Aron, J., Estimating Resources for Large Programming Systems, NATO
Conference on Software Engineering Techniques, Mason Charter, N. Y. 1969.

(8) Carriere, W. M. and Thibodeau, R., Development of A Logistics Software
Cost Estimating Technique for Foreign Military Sales, General Research
Corporation, Santa Barbara, California, June 1979.

(9) Putnam, L., A General Empirical Solution to the Macro Software Sizing and
Estimating Problem, IEEE Transactions on Software Engineering 1,
Number 2, 1975.

(10) Norden, Peter V., Useful Tools for Project Management, Management of
Production, M. K. Starr (Ed.) Penguin Books, Inc., Baltimore, Maryland,
1970, pp. 77-101

(11) Parr, Francis N., An Alternative to the Rayleigh Curve Model for Software
Development Effort, Transactions on Software Engineering, May 1980.

(12) Halstead, M., Elements of Software Science, Elsevier North-Holland,
New York, 1977.

(13) Basili, Victor R. and Zelkowitz, Marvin V., Analyzing Medium Scale
Software Developments, Third International Conference on Software
Engineering, Atlanta, Georgia, May 1978.

(14) Musa, John D., A Theory of Software Reliability and Its Application,
IEEE Transactions on Software Engineering, Vol. SEl, No. 3, pp. 312-327.

I)

INFORMAL PAPER PREPARED FOR 9-1

SOFTWARE METRICS PANEL

SPONSORED BY OFFICE OF NAVAL RESEARCH

June 5, 1980

HIGH LEVEL LANGUAGE METRICS

Jean E. Sammet
IBM Federal Systems Division
Bethesda, Maryland

1. INTRODUCTION

There is a major difference between metrics for one or more

high level languages (e.g., FORTRAN, COBOL) and metrics for one

or more programs, although these concepts are often -- and

erroneously -- used interchangeably. The high level language is

clearly a major tool in producing a program, but the metrics are

quite different. For example, programs can be measured with

respect to their written length, time taken to prepare them,

running time, length of object code, complexity, and error rate

after completion. Of these measurable factors, two depend

primarily on the compiler -- namely running time and length of

object code. Two are highly dependent on the ability of the

programmer and the nature of the programming problem -- namely

time taken to prepare the program and error rate after completion.

One is a less objective metric than the others -- namely

complexity. Complexity metrics are really beyond the state of

9-2

the art right now, although various attempts have been made to

define such a measure (e.g. [Bell and Sullivan, 1974; McCabe,

1976]).

Program length seems as if it ought to be an objective

measure, but it is not really. The obvious way to measure program

length is by the ubiquitous "source lines of code", but that is not

clearly defined even within a single language, since free form lan-

guages permit numerous statements on a single line. One might

think that the number of characters in a program was a completely

objective measure, but even here one runs into many questions, e.g.,

(1) should comments be counted within the program length, (2)

should long data names really make a program seem longer than a

program which is identical except for using short data names and

(3) in a language such as APL which permits overprinting of

characters should such overprinted characters be counted as one

or two characters? One approach to program metrics is that

devised by Halstead [1977].

There will be no further discussion of program metrics,

because this paper is meant to deal with language metrics. The

measures in this latter area tend to be somewhat more subjective,

and harder to define. The main purposes for which language

metrics have been used in the past are for language selection

and/or comparison, and (separately) for language design. But

9-3

there are numerous other issues involved in language metrics

besides selection and design. However, they can all be classified

under the heading of potential research. Such topics include

levels of non-procedurality, deviations from one language to

another, functionality of a language, and the relationship of the

language to various program measurements. This paper discusses

each of these very briefly and informally, and mentions the diffi-

culties in carrying out experiments in language areas.

The term "language" or "programming language" as used in

this paper refers only to high level languages such as FORTRAN

or COBOL. There is no discussion in this paper of assembly

languages nor of such "midway" languages as PL/360.

2. NUMERICAL APPROACHES TO LANGUAGE SELECTION/COMPARISON

Language selection involves technical and non-technical

issues. An example of the former is the ability of the language

to handle subscripts (e.g., how many, what type of subscript

expressions) or to permit elaborate data layouts. An example

of the latter is the amount of training needed by the people who

are going to use the language. There are some items whose classi-

fication iS unclear -- the most notable one is the compiler. Most

people ignore this important distinction between the technical

and the non-technical issues, and get into intellectual and

9-4

practical difficulty as a result. However, in all cases, the

application area for which the language is to be used should be

the major consideration for technical evaluation.

There are two basic numerical methods for doing language

selection: numerical scoring against requirements, and

benchmarking.

2.1 Numerical Scoring of Languages

Various attempts have been made to make the process of

language selection more abstract, or at-least more visible and

objective and less dependent on handwaving and arbitrary human

judgment. If the requirements of the problem for which the lan-

guage is to be chosen are specified at the beginning, then a simple

scoring technique can be used, although it is often difficult to

apply. The technique simply assigns each requirement a weighting

factor to indicate its relative importance among all the other

requirements. Then each language is evaluated for its ability to

deal with that particular requirement. The numbers in both cases

are usually normalized, and then they are cross multiplied and a

final score is obtained. For a more detailed explanation of this

method, see [Browne et al, 1970; Sammet, 1971]. The technique

has been used in real situations (e.g., [Browne et al, 1970]).

')

9-5

Now nobody, least of all this author, would claim that such a

method eliminates all arbitrariness; people can use unreasonable

assignments of weights on both sides (i.e., both the importance

of the requirements and the evaluation of the language against

the requirements) to enable them to reach a predetermined

conclusion. However, this method has the advantage of at least

permitting all of these biases to be clearly visible to other

people who will review the scoring process.

In some cases, a prior step must be taken before the above

technique can be used; this occurs if the requirements themselves

are not clearly determined at the outset. The requirements

themselves could be determined by a similar type of weighted

scoring method, or by some nonnumeric method of group decision.

Again, there is no guarantee of objectivity, but at least the

biases will become visible if a scoring technique is used here.

The most extensive effort in comparing languages against require-

ments was the DOD sponsored work in evaluating about 20 languages

against the TINMAN requirements [Amoroso et al, 1977].

2.2 Benchmarking

The basic principal of benchmarking is to choose problems

and then write programs in the languages which are under considera-

tion. The major difficulty of course is to select a fair set of

9-6

problems which is representative of the application to be

implemented. There are then three types of benchmarking that can

be done. The first involves merely writing the programs on paper

and then measuring both the length of the program and the time it

takes a person to write it. Not much more can be done with regard

to measuring paper programs of that kind.

A second possibility is to actually execute the programs and

then measure those characteristics which are relevant to the

eventual application. For example, one can measure the length of

object code, the execution time for the running program, and any

other environmental factors that are relevant. If a compiler

which is to be used for the final project is actually available

for these benchmarks, and if the problems are validly selected,

then significant results can be obtained this way.

A third way of measuring for benchmarking is to measure the

characteristics of the programs using measures such as those

defined by Halstead [1977] or McCabe [1976]. The conclusions to

be drawn from such measures will depend on how much one believes

in either or both of those measurements. Such a discussion is

beyond the scope of this paper.

9-7

The earliest of the benchmarking studies seems to have

occurred in the early 1960s although the reference is currently

unavailable. Certainly one of the early thorough attempts at

comparing languages was [Rubey, 1968] which used benchmark

problems to compare PL/I to COBOL, FORTRAN, JOVIAL.

There are several difficulties with considering bench-

marking as a very good metric. First, the capabilities of

individual programmers tend to be more significant than the

qualities of the languages themselves; there are generally ways

around this by having the same programmers code problems in

several languages, but then there is a difficulty in the person

having more familiarity with the problem when it is coded in the

second language. A major -- but often very subtle difficulty --

arises in the actual choice of problems to be used for the bench-

marks. It is entirely possible to choose problems which favor

one language over another, and this is sometimes done unconsciously.

Furthermore, this bias (whether deliberate or accidental) is often

impossible to discover unless some objective person is expert in all

the problems and all the languages under consideration.

()j

- -

9-8

3. METRICS FOR LANGUAGE DESIGN

In order to apply metrics to language design, there are

two basic numerical approaches. The first involves feature com-

parison, and the second involves program metrics.

In order to do a feature comparison of the desirability of

various language designs, one can carry out human experiments to

compare features with respect to some desired criteria (e.g.,

readability, brevity). A number of people have conduzted experi-

ments in this area, e.g., see [Gannon and Horning, 1975; Gannon,

1977). These and many other experiments (including some of his

own) are described in [Schneiderman, 1980]. Among the most

interesting of these is Gannon 11977]; he designed two different

simple languages and had two sets of programmers write programs.

The language design issue being investigated was typed versus

typeless languages. The measurements were made on the number

and types of errors in the programs.

Another way of dealing with feature comparisons is by

various linguistic approaches, e.g., examination of concrete and

abstract syntax, types of grammar with various features. In

particular, the size of the grammar can provide a metric for a

language.

(_)

9-9

A third factor is the effect of various features on

compilers. In this context, one determines which features or

combinations thereof are easier (or more difficult) to implement

with respect to a particular compiler design.

As a fourth technique it is always possible to compare

language features against already existing languages according

to some specific criteria (e.g., number of subscripts allowed,

presence of recursion) and reach some determination. This approach

could provide relative metrics between two languages rather than

an absolute measure for a language.

One can also use program metrics (e.g., Halstead) to measure

one or more language designs. Thus if one is a believer in some

of these program metrics, one could try writing programs in

several alternate language designs and see what conclusions

could be reached.

4. POTENTIAL AREAS OF FUTURE RESEARCH

There are a number of fruitful areas for research in the

area of language metrics.

9-10

4.1 Technical vs Non-Technical Issues

Strengthen the understanding and the measurement of the

differences between technical and non-technical issues. This

would then enable the language selection to be done more

abstractly. At best the results in this area will be subjective

and relative, e.g., is the compiler a technical or a non-technical

issue with respect to the language? In my opinion it is

non-technical, but others will surely disagree, which simply

reemphasizes the subjective nature of the issue.

4.2 Measurement of Language Deviation

Develop methods of measuring the deviation of one language

from another. This has implications which range all the way from

the purely scientific to the practical area of contracting.

Thus, if one knows the level or amount of deviation of one

language from another, it may be possible to draw certain conclu-

sions about programs to be written in one versus in the other.

From a contractual point of view, it may become important to

know whether or not a language is a major or minor "deviation"

from some base language. Everybody uses the terms "dialect" and

"language-L-like", but nobody has ever supplied a scientific

meaning to these terms, and metrics should be developed to give

meaning to the terms. A primitive attempt at starting this work

_.

9-11

is given in [Sammet, 1971]. This seems to be a very fruitful

area of research and a few good Ph.D theses might solve this

problem.

4.3 Measure of Non-Procedurality

Develop measures of "non-procedurality". It is agreed by

virtually every knowledgeable person in the field that non-

proceduralness is a relative term which changes as the state of

the art changes. (See a discussion in [Leavenworth and Sammet,

1974]). Since one objective of research in languages is to allow

the user to specify as few of the details about his problem as

possible, metrics of non-procedurality will enable us to measure

our own progress towards this goal. In addition, people will

have some choice about how many details about a particular problem

they need to specify, by choosing a language at the right level

of non-procedurality. Thus, the more non-procedural language will

permit the user to specify fewer details. This is a very difficult --

although very important -- research topic. It is strongly related

to the problem of measuring functionality discussed in the next

section.

4.4 Measures of Programmer Productivity Via Functionality

Develop a good measure for programmer productivity. Clearly

this is one of the most crucial issues for which metrics aref)

9-12

needed, but also seems to be the hardest. The only thing that is

clear is that source lines of code is a poor measure, and yet it

seems to be the most prevalent one. What is desperately needed

is a measure of functionality for a language and for a program

written in the language. From that we could derive programmer

productivity. As an example, it is clear that a call to a

subroutine provides more function than a simple GO TO. On the

other hand, does a single loop statement provide more function

than a single CALL? And in which case has the programmer

accomplished more?

Research is needed for both the language and the programs

written in that language. With the technology of 1980, the

use of a "statement count" is a more accurate measure of function

accomplished in a program than a count of "physical lines of

code" in the program. However, even the definition of a state-

ment for these purposes needs research to have consistency from

one language to another. For example, how many statements (for

purposes of functionality and productivity) are there in IF A

THEN B ELSE C? And does that answer change if A or B or C are

themselves "IF statements" or does the answer depend on the

language?

()

9-13

4.5 Measuring Languages vs Measuring Programs

Develop techniques to numerically bridge the gap between

the measures of a language and measures of programs written in

that language. Right now, these measurements are frequently

mixed up or interchanged or not even recognized as being separate

concepts. A key issue is the "source lines of code" discussed

in the previous section, which may have different measures

depending on whether we are talking about the language or a

program written in the language. This is as much an educational

problem as a research problem.

4.6 Measuring Definitional Techniques

Develop measures of definitional techniques. It is clear

that the syntactical definitional technique which is used actually

has a significant effect on the language if the syntactic method

is chosen at the beginning. But we have no way of measuring this.

This is a very difficult topic, but fortunately an area of rela-

tively little importance.

4.7 Languages and the Life Cycle

Develop measures of a language, and its usefulness, over

the whole life cycle of a program. This probably involves con-

sideration of some languages besides the classical high level

languages, although measures of the latter in this context are

9-14

also of interest. Some languages may be useful for expressing

specifications or designs but poor for doing programming. Other

languages might be good for debugging and maintenance but poor

for writing programs quickly. Thus we would like to be able to

measure the appropriateness of a language with respect to each

portion of the life cycle; clearly such a metric would be a major

factor in language selection (as discussed in an earlier section).

4.8 Languages and Applications

Develop techniques for measuring the applicability of a

language to a particular application or class thereof. As

discussed in an earlier section, this is generally done by

evaluating specific technical and non-technical features of a

language in a subjective way. But perhaps there is some way of

making this measurement more objective.

5. POTENTIAL EXPERIMENTATION

Unlike some other areas, it is difficult to suggest useful

valid experiments in the area of language metrics. As with many

other aspects of measuring software, the individual differences

of programmers, or the individual differences in the applications

involved may swamp the element(s) being measured.

V

9-15

Specifically with regard to languages, one of the obvious

types of experiments involves language features (e.g., [Gannon,

19771). However, the issue here may be of the background language

within which the feature is being tested rather than the feature

itself. Thus, an issue of strong typing in a language, versus

weak typing or typeless languages cannot be separated entirely

from the surrounding language.

Another fruitful area for experimentation is the cost

occurring from the presence or absence of a particular feature

in a language. Such costs occur in learning the language, the

compiler, the maintenance of the programs in the language, and

potential needs for portability. It is important to note that this

experimentation applies equally well to presence and absence of a

feature. As a simple example, the ability to allow any arithmetic

expression as a subscript immediately leads to the need for rules

about a floating point value as a subscript. Is the (apparent)

generality of the rule just stated a help or a hindrance in learn-

ing the language and writing accurate maintainable programs?

Perhaps some experiments about major features could be run, but

this would probably be of intellectual interest only. Usually,

time and economics don't permit this type of work to be done

while the language is being designed!

9-16

REFERENCES

Amoroso, S., et al. Language Evaluation Coordinating Committee
Report to the High Order Language Working Group (HOLWG).
AD-A037634, Jan. 1977, 2617 pages.

Bell, D. E. and Sullivan, J. E. Further Investigations into the
Complexity of Software. MITRE Technical Report MTR-2874,
Vol. I, Bedford, Massachusetts, June 1974.

Browne, P. H., et al. DATA PROCESSING TECHNOLOGIES, VOLUME I -
HIGH-LEVEL LANGUAGE EVALUATION. Teledyne Brown Engineering,
Huntsville, Alabama, Army Contract No. DAHC60-69-C-0037,
May 1970.

Gannon, J. D. "An Experimental Evaluation of Data Type Conventions",
CACM, Vol. 20, No. 8, August 1977, pp. 584-595.

Gannon, J. D. and Horning, J. J. "Language Design for Programming
Reliability", IEEE Trans. Software Eng., Vol. 1, No. 2,
June 1975, pp. 179 - 191.

Halstead, M. Elements of Software Science, Elsevier,
New York, New York 1977.

Leavenworth, B. and Sammet, J. E. "An Overview of NonProcedural
Languages" Proc. ACM SIGPLAN Sympos. on Very High Level
Languages SIGPLAN Notices, Vol. 9, No. 4, April 1974,
pp. 1 - 12.

McCabe, T. J. "A Complexity Measure", IEEE Trans. Software Eng.,
Vol. 2, No. 6, Dec. 1976, pp. 308 - 320.

Rubey, R. J., et al. Comparative Evaluation of PL/I. Logicon Inc.,
San Pedro, California, AD-669096, April 1968.

Sammet, J. E. "Problems in, and a Pragmatic Approach to
Programming Language Measurement", AFIPS Fall Joint
Computer Conf., 1971, pp. 243 - 251.

Schneiderman, B. SOFTWARE PSYCHOLOGY: Human Factors in Computer
and Information Systems, Winthrop Publishers, Inc.,
Cambridge, Massachusetts 1980.

10-1

PERFORMANCE EVALUATION: A SOFTWARE
METRICS SUCCESS STORY

by W. C. Lynch and J. C. Browne

June 2, 1980

ABSTRACT

Performance evaluation has generally accepted metrics for both externally observable
aspects of performance (response times. rates of completion for externally defined units of
work. etc.) and for the performance of intermediate abstract machines (resource consumption
for execution of a given externally defined unit of work. etc.). Values for these metrics are.
however, often strongly context dependent. Performance evaluation has generated a scientific
approach to the development of the field. There is an effort to extract and define invariant
principles and there is a systematic hierarchic structuring of performance models to relate
concepts and metrics at different levels of abstraction. The fundamental problem is the
absence of operational (software engineering) procedures which will yield software systems
with desired values for given metrics. The principal research directions recommended for
increased emphasis are those in support of this problem are the development of invariant
principles which establish direct relations between elementary units of work (abstract
machine work) and externally defined units of work. and the developent of technology for
increasing the effectiveness and efficiency of the performance evaluation process. There is a
strong need for the development of abstract machine models appropriate for different types
of workload elements. An associated unmet requirement is a capability for describing and
specifying performance characteristics for these abstract machines.

UNIVERSITY OF TEXAS AT AUSTIN
Painter Hall 3.28 / Austin, Texas 78712

XEROX
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill RD. / Palo Alto / California 94304

W. C. Lynch and J. C. Browne
10-2

1.0)FINITIO\ .NI) OVERVIE\WI1\

Performance e~aluatiOn is determining and eaaluatin2 in context the completion time and resource
consumption of processes executing specified tasks on abstract machines. The early emphasis of
performance evaluation (when nardware was the expensike element of a computer systcm) %as on
the definition and measurement of (incomplete) sets of internal (efficienc) oriented) metrics for
resource utili/ation. The goal %as to maximize the efficienc of the computer system itself.
Current emphasis is on the definition. measurement. and prediction of external metrics (such as
response time and %ork throughputs). The goal is to maximize effecti\eness and producti\it% of
the total system.

An abstract machine ma% be a hardware realized machine or an abstract machine defined in terms
of abstract operations such as the comparisons of a sort algorithm or the multiplies of matrix
algorithms. A process may be a complex softkare system such as a data base transaction system
operating under an operating system on a large mainframe or it may be a simple sort algorithm on
a dedicated microcomputer. The task may be large. e.g.. determine the flux of neutrons 1.000
kiloicters from the epicenter of a gi\en thermonuclear detonation. 30 degrees from the direction
of a 10 mph prevailing wind. or small, such as sorting a short and almost sequential list of names.
We confine ourselhes here to considering performance evaluation of substantial software systems
on non-trivial (although perhaps abstract) computer systems. The performance evaluation of
systems execut:1g elenentar, uni:s of %ork -ppea.'s hcre only as components o' a hirar,:h'c
model, used systematically to lead to the evaluation of the performance of a substantial soffiare
sxstem. The study of processing of elementary units of work. algorithm analysis. is a substantial
sub-branch of computer science in its o~n right. It is logically a part of performance elauation
but is in practice largely executed b\ complexity theorists. The interested reader is referred to the
classical books of Knuth (KNU68.69.73]. Horowitz and Sahni (HOR78] or Aho. Hopcroft and
Illman JAHO'4] for substantive %orks on algorithm analxsis.

The \er. rapid rise in the role of person/machine interactions in work en\ironments makes the
external metrics of responsi\eness one of the most important criteria by which a soft%%are system
can be elaluated. Lack of human scale responsikeness can ha~e significant impact on the
producti'it\ of persons using a computer system and may lead to the propagation of increased cost
throughout an organization. Factors such as long deliver\ times and costs of housing. operations
and communications as well as hard\%are costs make the prediction of performance of soft,are
s\stems in ad\ance of implementation a significant problem. The dramatic rise in the integration
of computer systems into communication systems. monitoring systems and control systems (the
generic class of imbedded computer systems) is also increasing the significance of performance
metrics, both internal and external. The space and power limitations of process control
en\ironments often limit hardware capacity enhancement and force consideration again of
efficiency in the use of resources for imbedded systems. There ha~e in the past fe% kears appeared
se\eral texts and monographs on performance evaluation. These include [DRU73]. [HEI751 and
[FER78]. These books offer introduction to techniques and to representative applications.

2.0 PERFORMANCE METRICS

The metrics for the evaluation of performance of large software systems are disjoint in concept
from the metrics for the evaluation of other properties such as maintainability, understandability.
etc. The "--- ability" properties are difficult to define. Their definition cannot nou be based on
independent concepts. The rates at which a computer system delivers completed externally defined
units of work are definable and measurable. External performance metrics (e.g.. transaction or
interactive response time, work thruput) are thus simple and well defined and understood.
Complexity arises from the fact that a performance metric value is not an intrinsic propert\ of the
software sub-system alone. Many metrics are meaningful onl. in the context of a specific
hardware configuration and a specific workload to be executed by the softmare system. Thus

PERFORMANCE E\ALLATION: A SOFTWARE METRICS SUCCESS STORY
10-3

interprctition of gixen metric \alucs is subjectike and context dependent. Note that performance
e\aluation has dxcloped a hierarchically structured model where external metrics from one le\el
become parameters for higher 1excls (sec Section 3. following). The internal metrics of resource
consumption b% a gixen external unit of work or de\ice utilizations under a gixen load of external
mork are also in principle directly measurable and ha'e readily interpretable value sets. There is
still here subjectihit. and context dependence due to lack of comparability between phxsicallh
realized abstract machines.

There are two other aspects of performance exaluation which need comment. One is the concept
of cost effecti\eness to obtain a given level for an important metric such as responsi\eness. It is
here that an additional connection is made between internal and external metrics. It is often
possible to quantify costs in terms of resource power or resource availability. Another is the
concept of total system effectixeness where system definition includes the users who interface
directly Aith the system. This area of the quality of human interfaces is an extremely significant
problem in its own right. This article will confine itself onl. to the time responsineness aspects of
the human interface.

3.0 THE STATLS OF PERFORM.ANCE EVALUATION

The paper b\ Browne and Shaw [BRO0] in this \olume de\elops a paradigm for science in the
context of software systems. This paradigm points to the need for invariant principles as a basis
for a science and to the almost universal presence of a hierarchic concept structure relating more
complex objects to less complex objects.

Performance e\aluation has two serious streams of research aimed at development of basic
in ariant principles. The "software physics" work of Kolence [KOL72]. Hellerman [HEL72]. etc. is
based upon information theory concepts. The theme of this work is to establish operational
concepts for information transformations similar to the entropy concept in physics or information
theory. Unit operations on unit objects would in these models create precisely known changes in
state Nariables. The operational analysis work of Buzen [BUZ76] and Buzen and Denning [BLZ7S]
is a second and fundamental approach. Operational anaiysis is a sort of cosmology for softx~are
whereb\ the relationships between the macro metrics of a system are de\eloped without resorting
to the process through integration through micro metrics and models.

Performance e\aluation also has a set of structural concepts and relationships Ahich enable the
hierarchic integration of indi\idual unit models into a parametric s)stem model. There are tV
sub-streams -- the process/e\ent model [FRA75. MAC751 Ahich was developed for simulation
languages and the network of queues model 1KL175, GRA78] which was picked up b\ computer
science as an analbtical tool in the 1960's and has been extensi\ely developed in the computer
s. stem problem area.

There is a third stream of work focusing on the development of a whole catalog of unit models
which act as atoms in the hierarchic models de\eloped b\ simulation or queuing network analysis.
Included in this stream is the development of a large collection of single queue models whose
integration into a system is addressed by the network queuing modles refered to aboxe. Some of
the non-queuing models are quite simple but some (eg.. models of locality of reference effects)
JSP177] are not. Algorithm analysis is currently the dominant source of unit models.

The interdependence of software system performance e\aluation with hardware and torkload
concepts is easily seen in the queueing models. The queue/ser\er pairs generall. represent
hardware devices (and their software schedulers) while the resource consuming units are labelled
jobs. The actual service patterns (including the value of the response time metric) are controlled
both b\ the system's internal service facilities (hardware and software) and by the external requests
for serxice presented by the workload. Figure 1 is a simple queueing network model of a

W. C. Lynch and J. C. Browne 10-4

computer s.sten including a processing unit (CPU). 1/O de\ices (DISK) and user tenninals
(1Y). The units of %ork can be modelled as originating in the YIN ser\er. There ma. be
se'eral types of requests. each A ith a distinct requiement for CPL and DISK scr'ice. The arcs in
the figure represent the flok of job requests from de\ice to deice. The P . labeling the arcs are
the probability that a job of type i takes branch j.

The dependence of softhare system performance evaluation on abstract machine execution and
workload per\ades through all hierarchic levels for system models. Algorithm analysis is
performance e\aluation of a simple system on an abstract machine under a given workload. A sort
algorithm is. for example. said to require O(n-log-n) comparisons if the elements being collated are
initially in a random sequence. The abstract execution machine is a comparison machine while the
significant property of the workload, the initial state of the element sequence. is specified. This
structure carries to the much higher levels of abstraction of queueing netAork models. A queue
may represent a disk or a CPU while the ser\ice patterns of the servers are determined jointl b%
the specification of the workload, the application algorithms and the scheduling disciplines for the
soft\ are system.

Courtois [COU771 discusses decomposability and hierarchic structuring in general and
mathematical terms. Browne. et al [BRO75] gixe a case study of the application of hierarchic
modeling based upon queueing networks. Chandy. Herzog and Woo [CHA75] develop the formal
bsis for ani.aytic determination ol die single queuc equivailent io 4 network of queues.

In a multi-lexel hierarchic system, the metrics of the lower le\el abstract machine are axailable as
and become the parameters of the higher layers of the system. This systematic la.er-by-la.er
construction methodolog. focuses attention on those metrics of the louer lexel abstract machine
%hich are the required parameters for the performance e\aluation of the upper lexels.

This provides another explanation for the focus on response times as important metrics for
computer systems. The response times of the lo Aer lasers become service times for the upper
layers. In a person/machine system. the response times of the machine subsystem determine a
subset of the service times in the upper. human interfacing system.

Performance e\aluation can thus. in se\ era] senses. be regarded as conforming to the paradigm for
a softx are science. There are. albeit not widely accepted. inxariant principles which can be related
to observables and used to define fundamental properties of scale for performance. There is a
theoretical structure (models of systems) %%hich establishes useful input/output relationships ',hich
can be used both for an ex-post-facto explaination of the observed beha\ior of an existing system
and also for the prediction of future behavior of systems perturbed from base line models.

While there is nok emerging a methodolog for the prediction of performance of a softkarc
system in a given hardware and workload context we do not yet have good synthesis or design
capabilities. We are not at present able to achieve the software engineering of performance
properties. There do not at present exist well established methodologies for the de\elopment of
software systems which, put in the context of a hardware configuration and a workload, Aill deliver
specific performance metric values. However. work in this area of design and synthesis is nok in
progress. Attention is called to [FER78] and to the papers of Smith and Browne [SMi79a.79b.801.
of Sanguinetti (SAN791 and of Sha% (SHA79] for several different aspects of this problem.

It is not difficult to identify the impediments to the achievement of a design methodology. A
design methodology must haxe as its first step an understanding of the design space (or a useful
subset of the design space) as a function of the system specifications. The second step of a
methodology must be a set of procedures which select a specific design from the space. Each
potential design selected can then be evaluated by the analysis procedures described preceding.
Additi nal procedures can then be used to sequentially select better designs until an acceptable one
is achieved.

PERFORMANCE EVALUATION: A SOFFWARE METRICS SUCCESS STORY; 10-5

A.t preent. %c ha ¢ onl% a modest amount of research attempting to describe the design space for
s.nthesi: of large soft\karc s' stems mith most of the existing vork concentrated in the data hase
area. The procedures %hich s.stems programmers use to select initial and impro\ed designs is not
\ell understood and not nearlk ripe for automation.

The relationship of performance evaluation analysis to computer system design seems quite
analogous to the relationship of finite element analysis to the design of structures in ci\i
engineering. In the latter case. an adequate understanding of the design space and of procedures
for selecting improved designs has permitted the substantial automation of all kinds of structures
from bridges to airframes. It has also improved our knowledge of the relationships between
requirements and the \alue of metrics in those areas.

4.0 RESEARCH ANI) DEVELOPMENT IN THE PERFORMANCE EVALUATION ARE.

A fundamental problem in performance exaluation is the requirement for a methodolog vkhich
can predict both internal and external performance metrics from specifications rather than from
base line cases. In imbedded systems. in particular. it is important to kno\ performance metrics
before a commitment is made to physicall. engineer a particular set of resources into a constrained
enliironnient. Ihis general problem jedcs to a numbei of problems which must be solhed to
support this constructixe capability.

First. our anal)tic capabilit. still has some shortcomings in both unit models and the analxsis of
hierarchic systems integration. More realistic unit models need to be constructed. particularl
addressing the question of service costs due to information accessing and due to algorithm setup
times. Better unit models describing memor. space requirements are also needed and most of the
models could be improxed by including parametric dependencies on workload characteristics.
With respect to hierarchic systems integration, the representational capabilities of rapidl soluble
system models, such as queueing netmork models. need to be greatly extended. Additional
capabilities "hich are required include capabilities for rapid solution of finite queues and extended
sets of scheduling disciplines. Attention also needs to be paid to the de\elopment of model
structures appropriate to asynchronous (data flo\ control) concurrent executions. (See the Petri
net [PET77] based models of Noe and co-workers [NOE73]. [CRO75]: also [BRY79].)

Second. \he need to dexelop design (or design sketch) methodologies \,hich are capable of
integrating the existing anal. sis capabilities if 4e wish to establish causal relationships between
specific system requirements and specific values of system metrics. As noted before, this \kill

require a substantial increase in our fundamental knowledge of the topolog of the design space as
a function of the system specification. Improement in this area depends upon development of
better unit model structures. It \kill also require a substantial increase in our fundamental
knovkledge of procedures for selecting good (or improved) designs from the design space. This is a
\er\ general problem per\ading all of software development.

Third. as v e de\elop fundamental invariant principles at various levels of the system, we will be
able to \alidate model system representations against the invariant principles since the\ establish
direct relationships between requirements and performance metrics. The current state of affairs is.
hoe'\er. that both the information theor and operational analysis approaches are currently in a
state of flux and are not accepted widely as fundamental at their respective le\els of abstraction.
Continuing basic research in this area is sorely needed as the payoffs for any progress in this area
are quite large.

W. C. Lynrch and J. C. Bro% ne 1-

Referenco~

(AH0741 Aho. A. V.. Hopcroft. J. F. and llman. J. D)., THE DESIGN AND) AN.MlYSIS OF
COMPUTER AL.GORITrHMS. (Addison-Wesle%. Reading. 1974).

[BR075] Browne. J. C.. Chand\. K. M.. Brown, R. M.. Keller. T. W., TowAslex. 1). F. and Dissl%.
C. W.. "Hierarchical Techniques for the De~eloprnn of Realistic Models of Complex
Computer S~stems". Proc. IEEE 63. 966-977 (1975).

[BROSO] Browne. J. C. and Shaw. M.. "Science for Software E'aluation". (this Nolume).

[BRY79] Bryant. R. F. and Dennis. J. B.. "Concurrent Programming in RESEARCH
DIRE.CTIONS, IN SOFTWARE TECHNOLOGY. (MIT Press. Cambridge. 19-9).

[BUZ'761 Buzen. J. P.. "Fundamental LawAs of Computer Systems Performance". Proc. of Intl.
Syrnp. on Computer Perf. Modeling. Meas. and Exal.. Cambridge. Mass.. March 1976. 200-
210.

(BUZ78] Buzen. J. P. and Denning. P. J. "The Operational Analysis of Queueing Netw~ork
Models". Computing Sur~eys. 10. 225-262 (1978).

[CHA751 Chand\. K. .Hcrzog. U. and Woo. L.. "Parametric Analysis of Queueing Networks".
IBM. J. Res. Develop.. 19. 36-42 (1975).

[COt '71 Coutois. D. J.. DECOMPOSABILITY: Q1UEUEI'NG AND COMPUTER SYSTEM
APPLICATIONS. (A-cademic Press. NY. 1977).

[CR0-5] Crowley. C. P. and Noe. J. D.. "Interactive Graphics Simulation Using Modified Petri
Nets". Proc. on Simulation of Computer Systems. Boulder. Colorado. August 19'75. 177-

[DRL731 Drummond. M. E.. EVALUATION AND MEASUREMENT TECHNIQUES FOR
DIGITAL COMPUTERS. (Prentice-Hall. Englewood Cliffs. 1973).

(FER781 Ferrari. D.. COMPUTER SYSTEM PERFORMANCE EVALUATION. (Prentice-Hall.
Engle~ood Cliffs. .19718).

[FRA75] Franta. W. R.. PROCESS/EVENT DRIV'EN SIMULATION. Ame rican- Else\ ier. 1975).

[0RA781 Graham. G. S.. "Guest Editors Over~ iewk: Queueing Network Models of Computer
Systems Performance". Computing Surveys, 10. 219-224 (1978). This issue of Computing
Sur\'evs is dedicated to queueing network models of computer s~ stems.

[HEL721 Hellerman. L.. "A Measure of Computational Work". IEEE Trans. Comp.. 21. 439-446
(1972).

fHEL7SJ Hellerman. H. and Conroy. T. F.. COMPUTER SYSTEM PERFORMANCE. (McGraw-
Hill. New York. 1975).

[HOR781 Horowitz. E. and Sahni. S.. FUNDAMENTrALS OF COMPUTER ALGORITHMS.
(Computer Science Press. Inc.. Potomac. MD. 1978).

JKLI75] Kleinrock. L.. QUEUEING SYSTEMS: VOL. 1. THEORY and VOL. 2. COMPUTER
APPLICATIONS. (John Wile\ and Sons. 1975).

PERFORMIANCE EVALUATION: A SOFTWARE METRICS SUCCESS STORY 10-7

j\L*6S] Knuth. 1). E.. T HE- ART OF COMPUIER PROGRAMMING. \01.. 1:
F-UI)AIFNAI.ALGORITIHMIS. (Addison-Wcslc . Reading. 1968).

[KNL69] Knuth. 1). E.. THE ARIl OF COMPUTER PROGR\\IMING. VOL 2: SEMI-
"LAMERIC.J. ALGORIT HMS. (Addison -WNcsley. Reading. 1969).

IKNU731 Knuth. D. E.. THE ART OF COMPUTER PROGRAMMING. VOL. 3: SORTING
AND SEARCHING. (Addison-WNesley. Reading. 1973).

1K0L72] Kolence. K.. "Software Physics and Computer Performance Measurements". Proc. ACM
Nat]. Conf. 25. 1024-1040 (1972).

[N0E3]j Noe. J. D. and Nuit. G. J.. "'Macro E-ners for Representation of Parallel Systems". IEEE
Trans. Comp. C-22. 718-72-'7 (1973).

IMAC751 MacDougall. M. H.. "Process and E'ent Control in ASPOL". Proc. S\ymp. on the
Simulation of Computer Systems. Boulder. Colorado. August 1975. 35-51.

(PET77I Peterson. J. L.. "Petri Nets'. Computing Sur~eys. 9. 223-2521 (1977).

(SAN/91 Sdrnguinecai. I.. 'A lechnique for Integrating Simulation and System Design". Proc. of
Conf. on Simulation. Measurement and Modeling of Computer Systems. Boulder.
Colorado. August 1979. 163-172.

1SHA791 Shdk .M.- "A Formal System for Specifying and Verifying Program Performance". (Dept.
of Computer Science Report. Carnecgie-Mellon LUni'ersitx\). June 1979.

[SM1V9aI Smith. C. and Browne. J. C.. 'Performance Specifications and Analysis of Soft\are
Designs". Proc. of Conf. on Simulation. Measurement and Modeling of Computer Systems.
Bouilder. Colorado. August 1979. 173-182.

tSMI-9b] Smith. C. and Browne. J. C.. "Modeling Softwkare Systems for Performance Predictions"
Proc. CMIG. Group X. Dallas. Texas. December 1979.

ISM 1801 Smith. C. and B~rowne. J. C.. "Aspect,; of Soft~kare Design Analysis: Concurrency and
Blocking" (to be Presented at Performance *80. Toronto. M4ay 1980).

ISPI771 Spirn. J. R.. "Program Beha~ior: Models and Measurements". (Else~ier North- Holland.
Ltd.. NcA Yiork. 1977).

10-8

DIK
f P
. .DISK

1 CPU

P
i.TTy

TTY

Figure 1

Simple Queueing Network Model of a Computer System

K €)

11-1

STATISTICAL MEASURES OF SOFTWARE RELIABILITY

Richard A. DeMillo
Georgia Institute of Technology

Frederick G. Sayward
Yale University

DRAFT COPY - ONR Study Group on Software Metrics - DO NOT CIRCULATE

I. INTRODUCTION

Estimating program reliability presents many of the same problems as

measuring software performance and cost: the central technical issue con-

cerns the existence of an independent objective scale upon which may be

based a qualitative judgement of the ability of a given program to function

as intended In a specified environment over a specified time interval.

Several scales have already been proposed. For example, a program may be

judged reliable if it has been formally proved correct [l), if it has been

run against a valid and reliable test data set (21, or if it has been developed

according to a special disciplinc (3]. While these concepts may have

independent interest, they fail to capture the most significant aspect of

reliability estimation as it applies to software: Most software is unreliable

by these standards, but the degree of unreliability is not addressed. A

useful program which has not been proved correct is unreliable, but so is,

say, the null program (unless by some perversity of specification the null

program satisfies the designer); an operationally meaningful scale of

reliability should distinguish these extremes.

What is needed is a measure R(t) which, for a given piece of software

(i.e.. a system, subsystem, program, or program module) gives an index of

operational reliability in the time interval [O,t]. The most commonly

proposed such index is the reliability function of traditional reliability

theory 14,5.61:

11-2

R(t) - probability of survival at time t.

In the sequel, we will sketch the outlines of the traditional theory that is

most relevant to software reliability estimation, give a brief critical

analysis of the use of the traditional theory in measuring reliability, and

propose a new use of the R(t) measure which we believe more closely fits

the intuitive requirements of the scale we asked for above.

2. THE STATISTICAL THEORY

R(t) is to be interpreted as the probability of satisfactory performance

of the system in the time interval [O,t]. It is an underlying assumption that

satisfactory performance at time t implies satisfactory performance in the

interval [O,t]. A second assumption is that the form of the theory does not

change from system to system; in particular, it should not matter whether one

estimates R(t) for a total system, a subsystem, or a single component.

The second assumption suggests the following analysis of complex

systems. Let R be the reliability function for the ith component of the

system and define a random variable x, for each component as follows.

•/,If Ri(t) k a,

1 otherwise

The performance of the system is then determined by a 0-1 valued function

Simple examples of such performance functions are the functions for series

syste"s

lo" ""'*Xn xjx 2.. * minic Ii n),

and for "parallel" systems,

.- (l-xl)... (l-x) - Max(xI I'n).

J

11-3

For more complex situations, one may place additional requirements on the

performance function; for instance, the function may have to be coherent:

for all 1, xxSyi "> *(yv,..yn) (

The reliability function for the entire system is then

I - Prob{C(xl,...,xd=l).

For extremely simple models of subsystem failure (e.g., fixed independent

probabilities of satisfactory performance) such an analysis gives the combi-

natorial probabilities of success/failure in a very handy form.

For realistically complex systems, however, R(t) is determined by

probability distributions which draw their properties from observable parameters

of the system. For computer programs, as well as many other systems, it is

inconvenient to estimate satisfactory performance directly. Instead one

uses the observed failures of-thba-ysem.- LetyAt)Jbete failure distribution

of the system and let f be the corresponding probability density function.

Then

R(t) a 1-F(t) - J f(y)dy.

Often, the reliability distribution is more conveniently expressed in terms

of the failure rate (or hazard rate). Let B(t,h) represent the conditional

probability of failure by time t4h given survival at time t:

r(t) - lim (B(t,h)/h) - f(t)/R(t)
hUO

The failure rate determines the reliability since

l-F(t) - R(t) a exp(-Jt r(y)dy).

["0

11-4

One obtains a reliability function for a given system by a variety of

paths: nontechnical considerations like mathematical tractability, empirical

observations, or theoretical analysis of more fundamental properties of the

system which is subject to failure.

The exponential distribution. The exponential distribution is exactly

characterized by those systems which have constant failure rate.

R(t) exp(-et)

r(t) a Oexp(-6t)/exp(-Ot) - e.

The exponential distribution is the most widely used of the reliability models,

even when there is slight evidence to justify its use. It is, of course,

among the most tractable of the statistical models, but it can lead to serious

errors when the underlying distribution corresponds to failures that do not

occur randomly or which depend on the past history of the system. The

popularity of the exponential diLtribution (and the tendency to observe it in

complex systems) is no doubt due in part to the following fact. Let Ri be the

reliability of the ith component and let R - ITRi. If there are N components

in the system, define i(N) to be rl(O)+...+rN(O). Then R tends to be an

exponential distribution:

R(t) * exp(-Z(N)t) as N -

whenever three technical conditions are met.

1. each failure rate grows as

rI(t) - ri(O) + ait

as t 4 0.

2. i(N)(.as N) dd

3. (N)(a I +.,.+a N Is bounded by a fixed constant.

---- ----

11-5

These conditions are however not easy to satisfy, and several of the most

common distributions of reliability theory fail one or more of the

restrictions.

The Weibull distribution. In an attempt to circumvent the more serious

deficiencies of the exponential distribution, one is led to a family of dis-

tributions in which the failure rate is a function of time.

R(t) - exp(-ta/8),

r(t) - ata-1/O.

Obviously, the failure rate is increasing or decreasing depending on the

value of a. The properties of the R(t) distribution for certain choices of

a and 0 make it a good descriptor of mechanical "breakdown" phenomena, such

as failures due to metal fatigue or other failures due to stress. The Weibull

distribution varies wildly from the exponential distribution in its

statistical properties (compare, for example, the nth moments of both) and

thus cannot be used interchangeably_with predictable results. A special case

of the Weibull distribution called the Rayleigh distribution is common in

software reliability studies. This class of distributions fails to satisfy

restrictions (1) and (3) above, so that it is difficult to argue that

Interconnections of Rayleigh-distributed components may behave with simpler

failure rates.

Truncated normal distribution. The failure rate that is most commonly

cited as applicable to software lifecycles is the so-called "bathtub" curve

r(t)

time
t

11-6

As opposed to the Weibull-type distributions, the normal distributions model

systems which "wear out". e.g., light bulbs. Rather than dealing directly

with the reliability functions which may only be applicable to a portion of

the system life cycle, It is often convenient to combine several failure

rates to model modes of failure which apply to specific stages of development.

The wear-out models are particularly attractive in this regard. During the

initial stages of operation of a large number of copies of identical systems,

there is a high incidence of immediate failures ("infant mortality"). This

initiation process is followed by a relatively stable steady-state region

until, near the end of the useful lifetime of the systems, the incidence of

failures rises.

If #(x) is the probability density function for a normal distribution and

O(x) is the corresponding distribution function, then even though the

expression for R(t) involves an integral that cannot be expressed in closed

form, the failure rate Is easily expressed:

r(t) - ao(t-t0)/*(at0).

Renewal theory. A common application for the reliability theory sketched

above is in the prediction of cost of operation as the system functions within

some prescribed maintenance policy. By knowing statistical properties of

operational periods (e.g., such statistics as mean time between failure) and

repair periods (e.g., replacing a failed component reduces, the number of

failed components by one) a varitty of useful system parameters

can be calculated. In concert with system design and maintenance policies

(for example, survivability may be insured by redundancy and repair effort

reduced by keeping a stock of spare parts) standard optimization models can

be used to minimize total operating costs due to failure. The mathematics

11-7

of the optimization techniques dictates very simple statistical models for

these applications. Among the simplifications which seem to be essential

one frequently finds:

1. failures are inediately detectable and attributable to a

single component,

2. during periods of reduced operation the remaining load is

shared by the rest of the system,

3. the renewed system and its predecessor have identically

distributed failures.

3. SOFTWARE MODELS

The descriptions of extant software models presented here are obtained

from the.DACS sumaries [7]. Although a wide variety of models are covered

in the DACS extracts, we will highlight those which fall within the time-

dependent reliability models of the traditional theory. The following

developmental chart illustrates the use of these models.

DESIGN/IMPLEMENT DETERMINE BUCS PREDICT OPERATIONAL
FAILURES

T T+t time

At time T in the lifecycle of the software system, the statistical

model is determined, usually by controlled observations of system errors

(the "failures" of the traditional theory). In the interval [T,T+t] enough

data Is to be gathered to determine a failure rate r(t). This coupled

with a variety of subjective evidence concerning the behavior of the system

in operation then determines an estimate of the underlying failure dis-

tribution. The predictive model is then applied in the interval (T+t,T+t+kl,

11-8

where k is a "regenerative" time less than the operational lifetime of the

system.

The following table summarizes the ultiization of the traditional

models sumnarized in [7].

Distribution Number of Models

Exponential (incl. geometric 7
and Poisson)

Rayleigh or Weibull 3

Normal 1

As described above, the Expunential-Weibull distributions describe system

failures when the system components are stressed materials. While there may

be a body of experimental data which fits the appropriate failure rate

functions, the assumption of one of these distributions as the underlying

reliability distribution forces one or more of a number of questionable

assumptions concerning errors in software. For example:

1. The number of initial program errors can be reliably estimated.

2. Error detection rate (failure rate) is proportional to the

number of remaining errors.

3. Errors are discovered one at a time.

4. Once an error is detected, it can be located and removed immediately.

5. Error occurrence rate is constant.

6. Removing an error reduces the total number of errors by one.

7. Error occurrences are statistically independent.

8. The distribution of program inputs is known.

9. Error detection rate is proportional to the debugging effort.

10. Program size is constant over the lifetime of the program.

11-9

The experimental evidence to support these assumptions is contradictory [81.

Common sense would suggest that statistical models intended to describe

physical systems would be ill-adapted to software, but it is still possible

that nature allows an aggregate description of the error occurrence rate

in typical software that is useful in practice. One test of this is

careful experimentation on the assumptions 1-10. Allen Acree of the

Georgia Tech Testing Laboratory has, for instance, gathered extensive

data [91 on failure rates as related to the number of remaining errors in

small programs (50-1000 lines) and found that it does support the exponential

rate. In other studies by Acree and Timothy Budd of the Yale Testing

Laboratory, however, (9,101 there is rather clear evidence that the

strategic assumptions of independence of errors, single error occurrence,

and immediate removal fail drastically in even moderately large systems.

There is also considerable evidence that for large systems, most remaining

errors lie in unexecuted portions of code, which means that failure rates

cannot depend on either number of remaining errors or debugging effort for

these systems.

Certain of the remaining assumptions also appear hard to confirm. For

example, there is no methodologically acceptable way of estimated initial

error percentages. The most csumnly'proposed technique is-the-errr

seeding procedure described in [11], which is based on the population

statistics calculations described in Feller's classic text [12]. While this

procedure gives the best unbiased estimator for certain random populations,

it can badly overestimate or underestimate the number of errors when there

is nonrandom mixing of seeded and natural errors. There is experimental

evidence that such nonrandom mixing must take place [9,10].

11-10

Finally, the use of the Rayleigh or Weibull distributions to model

program modules presents severe mathematical difficulties for macro-modelling,

since these distributions are nonreproductive; that is, overall system

description is not a simple aggregate of module descriptions.

The usual validation of these models is the posterior observation

of failure rates and costs. The experimental technique is

deficient and lacks some essential size constraints to allow statistical

sampling techniques to be used with acceptable confidence.

If, indeed, the classical theory can be imported to software reliability

there must be considerable attention paid to deriving relevant distributions

from first principles and to developing the appropriate experimental and

data gathering (12] techniques. It should be noted, however, that software

errors must be viewed as design errors [8] (since there Is no material wear-

ing or stressing) and classical reliability theory does not deal satisfactorily

with design errors.

4. CONFIDENCE ESTIMATION

In a sense, the goals of traditional reliability theory and software

reliability measurement are fundamentally at odds with each other. We have

little opportunity to create large populations of identical systems and

observe failure rates to obtain statistically meaningful measurements of

failure distributions as indications of relative frequencies.

The more common situation is that a fixed programming-testing-

validation method is imposed with a certain confidence level. The actual

reliability of the system is then intertwined with this estimate of the

system's reliability (since we stop testing when our estimate is satisfied).

We should then ask for experiments to confirm the level of confidence

Ii --

in the chosen methodology. In traditional statistical approaches to

reliability, such objectively obtained parameters as number of error

observed per unit time are used to infer the appropriate distributions.

We suggest that the observable parameters represent instead a varying

quantity which represents a prior estimate of reliability. That is, we

use a function r(R) to represent our level of confidence in the

reliability level R of the software. For example, a program that has been

subjected to mutation analysis [13] might be described by a function r

with the shape shown below.

r(R)

0.5 1.0 R

reliability

It is important to note that r(R) is merely a quantitatively assessed

judgement; it is not necessarily an objective probability obtained by

classical techniques. The r function may, however, be based on solid

evidence and may form the basis for a scientific hypothesis concerning the

long run behavior of a system. By applying Bayes' theorem (11, it is

possible to gather "hard" evidence to support or deny the estimate of

confidence r(R). From now on, we treat R as a random variable with

probability density function r(R).

Suppose that in an experiment designed to refute a given reliability

level R we make a large number of observations and gather a statistic, say,

11-12

x, which is distributed as E(xIR) for a given level R. Think of E as

a distribution of errors for a given reliability; this is a quantity which

can be observed and inferred in a given programming environment. The

joint distribution for x and R is F(x,R). Let the associated pdf's

be e and f, so that

f(xR) - r(].)e(xJR),

the marginal density for x is:

g(x) - fR r(R)e(xIR)dR.

Then the conditional distribution for R is given by the density

h(R~x) - r(R)e(xlR)/g(x),

which represents our level of confidence in R given the results of the

experiment yielding x.

Even though these results merely restate Bayes'

theorem, the interpretation Implied by the results of the experiment yielding

x is not necessarily subjective. The key is rather in the degree of

objectivity with which r(R) is obtaine4.*

At the heart of this treatment of software reliability is a new view

of the role of statistical st6'ements. This point of view rejects the idea

that a meaningful probability of correct operation can be assigned to a piece

of software. Rather, any such assessment must be interpreted as a "level

of Coml dance" in the process used to validate the program. This effectively

shifts the statistical burden from the program to the methodology used to

s sad validate it. One problem with the traditional approach, which

49. PalUar criticism of Bayesian analysis in reliability [12, p. 124).

11-13

we noted briefly above, is that there is no acceptable sense in which the

frequency interpretation of the reliability function R(t) can apply to

software; there is, for example, no reasonable application of the law of

large numbers to obtain failure rates. This view of probability -- the limit

of a physically observable relative frequency -- is not the only view.

It is possible to construct alternative subjective probabilities. In fact,

James Bernoulli in 1713 described probabilities as "degrees of confidence."

Even though we use the term "subjective" in describing the non-

frequency version of R(t), it does not follow that the measure represents

an ad hoc assessment of reliability. For example, the prior distribution

may not really represent a subjective estimate of reliability. It may be

the result of experimental research and summarization. This suggests an

Iterative procedure for "updating" the state of knowledge regarding the

reliability of the validation methodology. In other words, an assessment

of reliability represents a judgement relative to a prior reference "standard"

which the user presumably understands, believes, and against which he is

being required to wager. Hence, for the reliability measurement to be useful,

it must only order uncertain events so that the user may consistently win

when he adopts the rational betting strategy.

fREFERENCES

[1 Z. Manna, Mathematical Theory of Computation, McGraw Hill, 1974.

[2) S. Gerhart and J. Goodenough, "Toward a Theory of Test Data Selection,"
in R. Yeh (Editor),--Cuftint ren 's-- rUATM i'i1n ka..._ VDI. 2,
Prosram Validation, Prentice Hall, 1977, pp. 44-79.

(3) E. Dijkstra, A Discipline of Programming, Prentice Hall, 1977.

14] LC. Kapur and L.R. Lambertson, Reliability in EnsineerLna Design,
Wiley. 1977.

11-14

[51 M. Zelen (Editor), Statistical Theory of Reliability, University of
Wisconsin Press, 1964.

[6] R.E. Barlow and F. Proschan, Mathematical Theory of Reliability,

Wiley, 1965.

[7] DACS, Quantitative Software Models, March 1979.

[8] R._Longbottom, Computer System Reliability, Wiley, 1980.

[9] A.T. Acree, "On Mutation," PhD Thesis, School of Information and
Computer Science, Georgia Institute of Technology, June, 1980.

[10] T.A. Budd, "Mutation Analysis of Program Test Data," PhD Thesis,

Department of Computer Science, Yale University, June, 1980.

[11] T.Gilb, Software Metrics, Prentice Hall, 1978.

[121 W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. 1, Wiley. 1968.

[13] A.T. Acree, T.A. Budd, R.A. DeHillo, R.J. Lipton, and F.G. Sayward,
"Mutation Analysis," Report GIT-ICS-79/08, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, Georgia
30332.

12-1

THE MEASUREMENT OF SOFTWARE QUALITY AND COMPLEXITY

Bill Curtis
Information Systems Programs
General Electric Company

Arlington, Virginia

Uses for Software Metrics

The measurement of software complexity is one facet of a larger effort
to measure important software characteristics. Measurements of software
characteristics can provide valuable information throughout the software
life cycle. During development, measurements can be used to predict the
resources which will be required in future phases of the project. For
instance, metrics developed from the detailed design can be used to predict
the amount of effort that will be required to implement and test the code.
Metrics developed from the code can be used to predict the number of errors
that may be found in subsequent testing or the difficulty involved in
modifying a section of code. Because of their potential predictive value,
software metrics can be used in at least three ways:

1. Management information tools - As a management tool, metrics
provide several types of information. First, they can be used to
predict future outcomes as discussed above. Measurements can be
developed for costing and sizing at the project level, such as in
the models proposed by Freiman and Park (1980), Putnam (1978), and
Wolverton (1974). Other models have been developed for estimating
productivity by Freberger and Basili (1979) and Walston and Felix
(1977). Such metrics allow managers to assess progress, future
problems, and resource requirements. If these metrics can be
proven reliable and valid indicators of development processes,
they provide an excellent source of management visibility into a
software project.

2. Measures of software quality - Interest grows in creating
quantifiable criteria against which a software product can be
judged (Mohanty, 1979). An example criterion would be the
minimally acceptable mean-time-between-failures. These criteria
could be used as either acceptance standards by a software
acquisition manager or as guidance to potential problems in the
code during software validition and verification (Walters, 1979).

3. Feedback to software personnel - Elshoff (1978) has used a
software complexity metric to provide feedback to programmers
about their code. When a section grows too complex they are
instructed to redesign the code until metric values are brought
within acceptable limits.

12-2

The three uses described above suggest a difference between measures of
process and product. Measures of process would include the resource
estimation metrics described as potential management tools. Measures of
cost and productivity quantify attributes of the development process.
However, they convey little information about the actual state of the
software product. Measures of the product represent software charac-
teristics as they exist as a given time, but do not indicate how the
software has evolved into this state. Measures used for feedback to
programmers or as quality criteria fall within this second category.

Belady (1977) argues that it will be difficult to develop a metric
which can represent both process and product. Development of such a metric
or set of metrics will require a model of how software evolves from a set of
requirements into an operational program. Charting the sequential phases of
the software life cycle will not provide a sufficient model. Some progress
is being made on system evolution by Lehman and his colleagues at Imperial
College in London (Benyon-Tinker, 1980; Lehman, 1980). In the remainder of
this section, I will deal with measures of product rather than process.

Omnibus Approaches to Quantifying Software

There have been several attempts to quantify the elusive concept of
software quality by developing an arsenal of metrics which quantify numerous
factors underlying theconcept. The most well-known of these metric systems
are those developed by Boehm, Brown, Kaspar, Lipow, MacLeod, and Merrit
(1978), Gilb (1977), and McCall, Richards, and Walters (1977). The Boehm et
al. and McCall et al. approaches are similar, although differing in some of
the constructs and metrics they propose. Both of these systems have been
developed from an intuitive clustering of software characteristics (Figure
1).

The higher level constructs in each system represent 1) the current
behavior of the software, 2) the ease of changing the software, and 3) the
ease of converting or interfacing the system. From these primary concerns
Boehm et al. develop seven intermediate constructs, while McCall et al.
identify eleven quality factors. Beneath this second level Boehm et al.
create twelve primitive constructs and McCall et al. define 23 criteria.
For instance, at the level of a primitive construct or criterion both Boehm
et al. and McCall et al. define a construct labeled "self-descriptiveness".
For Boehm et al. this construct underlies the intermediate constructs of
testability and understandability, both of which serve the primary use of
measuring maintainability. For McCall et al. self-descriptiveness underlies
a number of factors included under the domains of product revision and
transition.

Primitive constructs and criteria are operationally defined by sets of
metrics which provide the guidelines for collecting empirical data. The
McCall et al. system defines 41 metrics consisting of 175 specific elements.
Thus, the metrics themselves represent composites of more elementary

) measures. This proliferation of measures should ultimately be reduced to a

12-3

1.01

wo Yb

im

4.0

4.0~

owl4 m-Ad6

Gaa
- *4

III!YT T :1J TI
W1

do Ga

- 3 ~ = -Ii I -u~ t2;,

U 5 3

wo1~

12-4

manageable set which can be automated. Reducing their number will require
an empirical evaluation of which metrics carry the most information and how
they cluster. There are a number of multivariate statistical techniques
available for such analyses (Morrison, 1967).

No software project can stay within a reasonable budget and maximize
all of the quality factors. The nature of the system under development will
determine the proper weighting of quality factors to be achieved in the
delivered software. For instance, reliability was a critical concern for
Apollo space flight software where human life was constantly at risk. For
business systems, however, maintainability is typically of primary
importance. In many real-time systems where space or time constraints are
critical, efficiency takes precedence. However, optimizing code often

*lowers its quality as indexed by other factors such as maintainability and
portability. Figure 2 presents a tradeoff analysis among quality factors
performed by McCall et al. (1977).

The omnibus approach to metric development had its birth in the need
for measures of software quality, particularly during system acquisition.
However, the development of these metrics has not spawned explanatory theory
concerning the processes affected by software characteristics. The value of
these metric systems in focusing attention on quality issues is substantial.
However, there is still a greater need for quantitative measures which
emerge from the modeling of software phenomena. Much of the modeling of
software characteristics has been performed in an attempt to understand
software complexity.

Software Complexity

The measurement of software complexity is receiving increased
attention, since software accounts for a growing proportion of total
computer system costs. Complexity has been a loosely defined term, and
neither Boehm et al. nor McCall et al. included it among their constructs of
software quality. Complexity is often considered synonymous with
understandability or maintainability.

Two separate focuses have emerged in studying software complexity:
computational and psychological complexity. Computational complexity relies
on the formal mathematical analysis of such problems as algoritnm efficiency
and use of machine resources. Rabin (1977) defines this branch of
complexity as "the quantitative aspects of the solutions to computational
problems" (p. 625). This topic is discussed in a later paper in this
collection by James Browne and William Lynch. In contrast to this formal
analysis, the empirical study of psychological complexity has emerged from
the understanding that software development and maintenance are largely
human activities. Psychological complexity is concerned with the
characteristics of software which affect programmer performance.

12-5

4%4

CORRECTNESS 4

RELIABILITY 0
EFFICIENCY--

INTEGRITY

USABILITY 000101
MAINTAINABILITY 0 0 01 0
TESTABILITY 000 00 -

FLEXIBILITY 0 00 0010[0
PORTABILITY __ 100

INTEROPERABILITY 1

0 POSITIVE RELATIONSHIP

* INVERSE RELATIONSHIP

Figure 2. McCall ot als.' tradeoff analysis among
software quality factors.

12-6

The investigation of computational and psychological complexity has
been carried on without a unifying definition for the construct of software
complexity. There do, however, seem to be common threads running through
the complexity literature which suggest the following definition:

Complexity is a characteristic of the software interface which
influences the resources another system will expend or commit
while interacting with the software. (Curtis, 1980, p.102)

Several important points are implied by this definition. First, the
focus of complexity is not merely on the software, but on the software's
interactions with other systems. Complexity has little meaning in a vacuum,
it requires a point of reference. This reference takes meaning only when
developed from other systems such as machines, people, other software
packages, etc. It Is these systems that are affected by the "complexity" of
a piece of software. Worrying about software characteristics in the absence
of other systems has merit only in an artistic sense, and measures of"artistic" software are quite arbitrary. However, when there is an external
reference (criterion) against which to compare software characteristics, it
becomes possible to operationally define complexity.

Second, explicit criteria are not specified. This definition allows
mathematicians and psychologists to become strange bedfellows since it does
not specify the particular phenomena to be studied. Rather, this definition
steps back a level of abstraction and describes the goal of complexity
research and the reference against which complexity takes meaning.
Complexity is an abstract construct, and operational definitions only
capture specific aspects of it.

The second point suggests the third: complexity will have different
operational definitions depending on the criterion under study. Operational
definitions of complexity must be expressed in terms which are relevant to
processes performed in other systems. Complexity is defined as a property
of the software interface which affects the interaction between the software
and another system. To assess this interaction, we must quantify software
characteristics which are relevant to It. A model of software complexity
implies not only a quantification of software characteristics, but also a
theory of processes in other systems. Thus, the starting point for
developing a metric is not an ingenious parsing of software characteristics,
but an understanding of how other systems function when they interact with
software.

The following steps should be followed in modeling an aspect of
software complexity:

1) Define (and quantify) the criterion the metric will be developed
to predict.

2) Develop a model of processes in the interacting system which will
affect this criterion.

12-7

3) Identify the properties of software which affect the operation of
these processes.

4) Quantify these software characteristics.

5) Validate this model with empirical research.

The importance of this last point cannot be overemphasized. Nice theories
become even nicer when they work. Preparing for the rigors of empirical
evaluation will probably result in fewer metrics and tighter theories.
Results from validation studies make excellent report cards on the current
state-of-the-art.

Belady (1980) has categorized much of the exist(fq ;oftware complexity
literature. First, he distinguishes different software characteristics
which are measured as an index of complexity: algorithms, control
structures, data, or composites of structures and data. In a second
dimension he describes the type of measurement employed: informal concept,
construct counts, probabilistic/statistical treatments, or relationships
extracted from empirical data. Most research has concerned counts of
software characteristics, particularly control structures and composites of
control structures and data. I will review some of the complexity research
in these two areas and compare them to a system level metric.

Control Structures

A number of metrics having a theoretical base in graph theory have been
proposed to measure software complexity by assessing the control flow (Bell
& Sullivan, 1974; Chen, 1978; Green, Schneidewind, Howard,& Parlseau, 1977;
McCabe, 1976; Richards & Chang, 1975; Woodward, Hennell, & Hedley, 1979).
Such metrics typically index the number of branches or paths created by the
conditional expressions within a program. McCabe's metric will be described
as an example of this approach since it has received the most empirical
attention.

McCabe (1976) defined complexity in relation to the decision structure
of a program. He attempted to assess complexity as it affects the
testability and reliability of a module. McCabe's complexity metric, v(G),
is the classical graph-theory cyclomatic number indicating the number of
regions in a graph, or in the current usage, the number of linearly
independent control paths comprising a program. When combined these paths
generate the complete control structure of the program. McCabe's v(G) can
be computed as the number of predicate nodes* plus 1, where a predicate node
represents a decision point in the program. It can also be computed as the
number of regions in a planar graph (a graph in regional form) of the
control flow. This latter method is demonstrated in Figure 3.

-, -

12-8

2

V(6J)2 () 4 VG

Figure 3.Computatiuon of McCabe's vlGi.

12-9

McCabe argues that his metric, assesses the difficulty of testing a
program, since it is a representation of the control paths which must be
exercised during testing. From experience he believes that testing and
reliability will become greater problems in a section of code whose v(G)
exceeds 10.

Basili and Reiter (1980) and Myers (1977) have developed different
counting methods for computing cyclomatic complexity. These differences
involved counting rules for CASE statements and compound predicates.
Definitive data on the most effective counting rules have yet to be
presented. Nevertheless, considering alternative counting schemes to those
originally posed by the author of a metric is important in refining
measurement techniques.

Evidence continues to mount that metrics developed from graphs of the
control flow are related to important criteria such as the number of errors
existing In a segment of code and the time to find and repair such errors
(Curtis, Sheppard, & Milliman, 1979; Feuer & Folkes, 1979; Schneidewind &
Hoffman, 1979). Chen (1978) developed a variation of the cyclomatic number
which indexed the nesting of IF statements and related this to the
information-theoretic notion of entropy within the control flow. He
reported data from eight programmers indicating that productivity decreased
as the value of his metric computed on their programs increased. Thus, the
number of control paths appears directly or indirectly related to
psychological complexity.

Software Science

The best known and most thoroughly studied of what Belady (1980)
classifies as composite measures of complexity has emerged from Halstead's
theory of Software Science (1972, 1977). In 1972, Maurice Halstead argued
that algorithms have measurable characteristics analogous to physical laws.
Halstead proposed that a number of useful measures could be derived from
simple counts of distinct operators and operands and the total frequencies
of operators and operands. From these four quantities Halstead developed
measures for the overall program length, potential smallest volume of an
algorithm, actual volume of an algorithm in a particular language, program
level (the difficulty of understanding a program), language level (a
constant for a given language), programming effort (number of mental
discriminations required to generate a program), program development time,
and number of delivered bugs In a system. Two of the most frequently
studied measures are calculated as follows:

1.)

12-10

V = (NI+N 2) 1092 (l +n 2)

nl N2 (NI + N2) 1og2 (l1 + n2)E=
2fl2

where V is volume, E is effort, and

T11= number of unique operators

12 = number of unique operands

N1 = total frequency of operators

N2 - total frequency of operands

Halstead's theory has been the subject of considerable evaluative research
(Fitzsimmons & Love, 1978). Correlations often greater than .90 have been
reported between Halstead's metrics and such measures as the number of bugs
in a program (Bell & Sullivan, 1974; Cornell & Halstead, 1976; Fitzsimmons,
1978; Funami & Halstead, 1976; Ottenstein, 1979), programming time (Gordon &
Halstead, 1976; Sheppard, Milliman & Curtis, 1979), debugging time (Curtis,
Sheppard & Milliman, 1979; Love & Bowman, 1976), and algorithm purity (Bulut
& Halstead, 1974; Elshoff, 1976; Halstead, 1973).

My colleagues and I have evaluated the Halstead and McCabe metrics in a
series of four experiments with professional programners. In the first two
experiments (Curtis, Sheppard, Milliman, Borst, & Love, 1979) problems in
the experimental procedures, a limit on the size of programs studied, and
substantial differences in performance among the 36 programmers involved in
each suppressed relationships between the metrics ano task performance. In
fact it did not appear that the metrics were any better than the number of
lines of code for predicting performance. However, in the third experiment
(Curtis, Sheppard, & Milliman, 1979) we used longer programs, increased the
number of participants to 54, and eliminated earlier procedural problems. We
found both the Halstead and McCabe metrics superior to lines of code for
predicting the time to find and fix an error in the program.

In the final experiment (Sheppard, Milliman, & Curtis, 1979), we asked
nine programmers to each create three simple programs (e.g., find the
maximum and minimum of a list of numbers) from a common specification of
each program. The best predictor of the time required to develop and
successfully run the program was Halstead's metric for program volume
(Figure 4). This relationship was slightly stronger than that for McCabe's
v(G), while lines of code exhibited no relationship.

The datapoints circled in Figure 4 represent the data from a program
whose specifications were less complete than those of the other two programs
studied. The prediction of development time for this program was poor. We
have observed in other studies that outcomes are more predictable on
projects where a greater discipline regarding software standards and
practices was observed (Milliman & Curtis, 1979, 1980). This experiment
suggests that better prediction of outcomes may occur when more disciplined

- software development practices (e.g., more detailed program specifications)
reduce the often dramatic performance differences among programmers.IL .,

12-11

50-
0g

40-J &J
30-

- .low o

-0

.0

100 200 400 600 800
HALSTEAD'S V

Figure 4. Scatterplot of Halstead's V against development
time fromi Sheppard et al.

AD-AO87 412 YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE F/S 912
DRAFT SOFTWARE METRICS PANELS FINAL REPORT. PAPERS PRESENTED AT--ETC (U)

JUN 8I A J PERLIS. F 6 SAYWARO, M SHlAW NOOOD-79-C-0672

UNCLASSIFIED RR-182/80 NL4 flfllflfflfllflfflf
I EEmhEmhEmhhhhI
EohEohEEEEEshE
mEohhhEEohhohI

MICRQCOPY RESOLUTION TEST CHART

........ 12........5 i

12-12

In these experiments we found Halstead's and McCabe's metrics to be
valid measures of psychological complexity, regardless of whether the
program they were computed on was developed by the programmer under study or
by someone else. We concluded that there is considerable promise in using
complexity metrics to predict the difficulty programmers will experience in
working with software. Similar conclusions have been reached by Baker and
Zweben (1979) on an analytical rather than empirical evaluation of the
Halstead and McCabe metrics.

Halstead's metrics have proven useful in actual practice. For
instance, Elshoff (1978) has used these metrics as feedback to programers
during development to indicate the complexity of their code. When metric
values for their modules exceed a certain limit, programmers are instructed
to consider ways of reducing module complexity. Bell and Sullivan (1974)
suggest that a reasonable limit on the Halstead value for length is 260,
since they found that published algorithms with values above this figure
typically contained an error.

Regardless of the empirical support for many of Halstead's predictions,
the theoretical basis for his metrics needs considerable attention.
Halstead, more than other researchers, tried to integrate theory from both
computer science and psychology. Unfortunately, some of the psychological
assumptions underlying his work are difficult to justify for the phenomena
to which he applied them. In general, computer scientists would do well to
immediately purge from their memories:

* The magic number 7 + 2

0 The Stroud number of 18 mental discriminations per second.

These numbers describe cognitive processes related to the perception or
retention of simple stimuli, rather than the complex information processing
tasks involved in programming. Broadbent (1975) argues that for complicated
tasks (such as understanding a program) the magic number is substantially
less than seven. These numbers have been incorrectly applied in too many
explanations and are too frequently cited by people who have never read the
original articles (Miller, 1956; Stroud, 1967). Regardless of the validity
of his assumptions, Halstead was a pioneer in attempting to develop
interdisciplinary theory, and his efforts have provided considerable grist
for further investigation.

I nterconnectedness

Since the modularization of software has become an increasingly
important concept in software engineering (Parnas, 1972), several metrics
have been developed to assess the complexity of the interconnectedness among
the parts comprising a software system (Belady & Lehman, 1976; McClure,
1978; Myers, 1975, 1978; Yau & Collofellow, 1978). For instance, Myers
(1975) models system complexity by developing a dependency matrix among
pairs of modules based on whether there is an interface between them.
Although his measure does not appear to have received much empirical
attention, it does present two important considerations for modeling
complexity at the system level (Myers, 1978). The first consideration Is
the strength of a module; the nature of the relationships among the elements
within a module. The stronger, more tightly bound a module, the more
singular the purpose served by the processes performed within it. The

12-13

second consideration is the coupling between modules; the relationship
created between modules by the nature of the data and control that is passed
between them.

A primary principle of modular design is to achieve as much
independence among modules as possible. This independence helps to localize
the impact of errors or modifications to within one or a few modules. Thus,
the complexity of the interface between modules may prove to be an excellent
predictor of the difficulty experienced in developing and maintaining large
systems. Myers' measure identifies data flow as a critical factor in
maintainability. Nevertheless, his measure has not been completely
operationally defined, and its current value is primarily heuristic. Yau
and his associates (1979) are currently working on validating a model of
this generic type. Unfortunately, little empirical evidence is available to
assess the predictive validity of such metrics.

The focus of metrics measuring the interconnectedness among parts of a
system is quite different from those which measure elementary program
constructs or control flow. Metrics measuring the latter phenomena take a
micro-view of the program, while interconnectedness metrics speak to a
macro-level. An improved understanding of aggregating from the micro- to
the macro-level needs to be achieved. For instance, summing the Halstead
measures across modules leads to very different results than computing them
once over the entire program (Milliman & Curtis, 1980).

Interconnectedness metrics may prove more appropriate parameters for
macro-level models such as those which predict maintenance costs and
resources. Macro-level metrics may prove better because factors to which
micro-level metrics are more sensitive, such as individual differences among
programmers, are balanced out at the macro- or project level. Macro-level
metrics are less perturbed by these factors, increasing their benefit to an
overall understanding of system complexity and its impact on system costs
and performance.

Conclusions

A major theme behind the effort to develop valid measures of software
quality and complexity is the desire to provide predictors of the life cycle
costs and resources which must be invested in a software system. A
traditional measure of life cycle effort has been lines of code developed or
modified per person-month. However, this is a terribly flawed measure of
productivity (Jones, 1978) which does not provide insight into the processes
which affect costs and resources. Software characteristics are believed to
be much more directly related to processes which determine cost and resource
outcomes. That is, the research reviewed here demonsrated that several
software complexity metrics are related to the number of errors left in a
section of code and the ease of debugging and modifying the code. Software
errors and the effort required to find and eliminate them are a major driver
of software costs and resources. For instance, an error caught during
system specification may be 50 times cheaper to repair than if it were not
detected until system testing (Jones, 1978).To theextent that software
metrics can provide feedback on error-proneness throughout the life cycle,
they become a means of estimating and controlling costs and resources.

Research needs to be conducted at two levels of analysis. At the
macro-level, appropriate metrics need to be developed which relate to system

12-14

costs and effort. Most existing measures are computed directly from the
code. If measures can be developed which use information available during
the initial requirements allocation or software system specification, they
could be used in costing and sizing models. Metrics computed on tested code
could be used as input to software reliability models which require an
estimate of delivered errors. Metrics computed at the macro-level will be
valuable for management information and prediction, but not necessarily for
developing process models of software development and maintenance
activities.

Software metrics computed at the micro-level, such as those of Halstead
and McCabe, will probably be of greater assistance in developing models of
software development and maintenance processes. Continued research needs to
determine the most important characteristics affecting software development
and maintenance tasks. It is also possible that the importance of these
characteristics will vary by the nature of the task and the capability of
the programmer. For instance, should different software characteristics
prove to be better predictors of performance based on the capability of the
programmer, they may provide insight into how a programmer's method of
understanding software matures. Such an understanding could lead to
designing better training techniques.

The current state-of-the-art is that interesting relationships have
been demonstrated. Future research needs to refine the metrics develop
predictive equations, validate them on large data sets, and refine the
metrics as software technology changes.

ACKNOWLEDGEMENTS

I would like to thank Laszlo Belady and Sylvia Sheppard, and Drs.
Elizabeth Kruesi and John O'Hare for their thoughts and comments. Some of
this paper was drawn from work supported by the Office of Naval Research,
Engineering Psychology Programs (Contract #NO0014-79-C-0595). However, the
opinions expressed In this paper are not necessarily those of the Department
of the Navy. Reprints can be obtained from Dr. Bill Curtis; General Elec-
tric Company, Suite 200; 1755 Jefferson Davis Highway; Arlington, VA 22202.

12-15

REFERENCES

Baker, A.L. & Zweben, S.H. A comparison of measures of control flow
complexity. In Proceedings of COMPSAC '79. New York: IEEE,
1979, 695-701.

Basili, V.R. & Reiter, R.W. Evaluating automatable measures of
software development. In Workshop on Quantitative Software Models
for Reliability. Complexity, and Cost. New York: IMEE, 17U,

- 107-116.

Belady, L.A. Software complexity. In Software Phenomenology.
Atlanta: AIRMICS, 1977, 371-383.

Belady, L.A. Complexity of programming: A brief summary. In
Proceedings of the Workshop on Quantitative Models of Software
Reliability, Complexity, and Cost. New York: IEEE, 1980, 90-94.

Belady, L.A. & Lehman, N.M. A model of large program development.
IBM Systems Journal, 1976, 15(3), 225-252.

Bell, D.E.& Sullivan, J.E. Further Investigations into the
Complexity of Software (Tech. Rep. MTR-2874). Bedford, MA:
MITRE, 1974.

Benyon-Tinker, G. Complexity measures in an evolving large system. In
Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost. New York: IEEE, 1980, I17-1!7.

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J.,
Merrit, M.J. Characteristics of Software Quality. Amsterdam:
North Holland, 19"8.

Broadbent, D.E. The magic number seven after fifteen years. In
A. Kennedy & A. Wilkes (Eds.). Studies In Long Term Memory. New
York: Wiley, 1975, 3-18.

Chen, E.T. Program complexity and programmer productivity. IEEE
Transactions on Software Engineering, 1978, 3, 187-194.

Cornell, L.M. & Halstead, M.H. Predicting the Number of Bugs Expected
in a Program Module (Tech. Rep. CSD-TR-205). West Lafayette, IN:
Purdue University, Computer Science Department, 1976.

Curtis, B. In search of software complexity. In Workshop on
quantitative Software Models for Reliability. Complexity, and Cost.
New York: IEEE, 198U, 95-lb.

Curtis, B., Sheppard, S.B., & Milliman, P. Third time charm: Stronger
prediction of programmer performance by software complexity
metrics. In Proceedings of the Fourth International Conference on
Software Engineering. New York: IEEE, 1979, 356-360.

)I

12-16

Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., & Love, T.
Measuring the psychological complexity of software maintenance
tasks with the Halstead and McCabe metrics. IEEE Transactions on
Software Engineering, 1979, 5, 96-104.

Elshoff, J.L. Measuring commercial PL/1 programs using Halstead's
criteria. SIGPLAN Notices, 1976, 11, 38-46.

Elshoff, J.L. A review of software measurement studies at General
Motors Research Laboratories. In Proceedings of the Second
Software Life Cycle Maynagement Workshop. New York: IEEE, 1978,
16b-171.

Feuer, A.R. & Fowlkes, E.G. Some results from an empirical study of
computer software. In Proceedings of the Fourth International
Conference on Software Engineering. New York: IEEE, 1979,
351-355.

Fitzsimmons, A.B. Relating the presence of software errors to the
theory of software science. In A.E. Wasserman and R.H. Sprague
(Eds.), Proceedings of the Eleventh Hawaii International
Conference on.Sstems Scienes Western Periodicals, 1978, 4045.

Fitzsimmons, A.B. & Love, L.T. A review and evaluation of software
science. ACM Computing Surveys, 1978, 10, 3-18.

Freburger, K. & Basili, V.R. The Software Engineering Laboratory:
Relationship Equations (Tech. Rep. TR-764). College Park, MD:
University of Maryland, Computer Science Department, 1979.

Freiman, F.R. & Park, R.E. PRICE software model - Version 3 an
overview. In Workshop on Quantitative Software Models for
Reliability, Complexity and Cost. New York: IEEE, 1980, 3"2-41.

Funami, Y. & Halstead, M.H. A software physics analysis of Akiyama's
debugging data. In Proceedings of the MRI 24th International
Symposium: Software Engineering. New York: Polytechnic Press,17,133-138.

Gilb, T. Software Metrics. Cambridge, MA: Winthrop, 1977.

Green, T.F., Schneidewind, N.F., Howard, G.T., & Pariseau, R. Program
structures, complexity and error characteristics. In Proceedings
of the Symposium on Computer Software Engineering. New York:
Polytechnic Press, 1976, 139-154.

Gordon, R.0. & Halstead, M.H. An experiment comparing Fortran
programming times with the software physics hypothesis. AFIPS
Conference Proceedings, 1976, 45, 935-937.

Halstead, N.H. Natural laws controlling algorithm structure. SIGPLAN
Notices, 1972, 7.(2), 19-26.

(,r

Halstead, M.H. An experimental determination of the *purity" of a

trivial al gorithm. ACM SIGME Perfomance Evaluation Review, 1973,
2(1), 10-15.

Halstead, M.H. Elements of Software Science. New York: Elsevier
North-Holland, 1977.

Jones, T.C. Measuring programming quality and productivity. IBM
Systems Journal, 1978, 17(1), 39-63.

Lehman, M.M. Programs, programming and the software life cycle. IEEE
Proceedings, 1980, 68, xxx-xxx.

Love, L.T. & Bowman, A. An independent test of the theory of software
physics. SIGPLAN Notices, 1976, 11, 42-49.

McCabe, T.J. A complexity measure. IEEE Transactions on Software
Engineering, 1976, 2, 308-320.

McCall, J.A., Richards, P.K., & Walters, G.F. Factors in Software
Quality (Tech. Rep. 77CIS02). Sunnyvale, CA: General Electric,
immand and Infomation Systems, 1977.

McClure, C.L. Reducing COBOL Complexity through Structured
Programming. New York: Van Nostrand Reinhold, 1978.

Miller, G.A. The magic number seven, plus or minus two. Psychological
Review, 1956, 63, 81-97.

Milliman, P. & Curtis, B. An evaluation of modern programming
practices in an aerospace environment. In Proceedings of the Third
Digital Avionics Systems Conference. New York: IEEE, 1979.

Milliman, P. & Curtis, B. A Matched Project Evaluation of Modern
Programming Practices (RADC-TR-80-6, 2 vols.). Griffiss AFB, NY:
Rome Air Development Center, 1980.

Mohanty, S.N. Models and measurements for quality assessment of
software. ACM Computing Surveys, 1979, 11, 251-275.

Morrison, D.F. Multivariate Statistical Methods. New York:

McGraw-Hill, 1967.

Myers, G.J. Software Reliability. New York: Wiley, 1976.

Myers, G.J. An extension to the cyclomatic measure of program
complexity. SIGPLAN Notices, 1977, 12(10), 61-64.

Myers, G.J. Composite/Structured Design. New York: Van Nostrand
Reinhold, 1978.

Ottenstein, L.M. Quantitative estimates of debugging requirements.
IEEE Transactions on Software Engineering, 1979, 5, 504-514.

(7) Parnas, D.L. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 1972, 15, 1053-1058.

12-18

Putnam, L.H. A general empirical solution to the macro software sizing
and estimating problem. IEEE Transactions on Software Engineering,
1978, 4, 345-361.

Rabin, M.O. Complexity of computations. Communications of the ACM,
1977, 20, 625-633.

Richards, P. & Chang, P. Localization of Variables: A Measure of
omplexity (Tech. Rep. 75CIS01). Sunnyvale, CA: General Electric,

Lommand ano Information Systems, 1975.

Schneidewind, N. & Hoffman, H.M. An experiment in software error data
collection and analysis. IEEE Transactions on Software
Engineering, 1979, 5, 276-286.

Sheppard, S.B., Curtis, B., Milliman, P., & Love, T. Human factors

experiments on modern coding practices. Computer, 1979, 12, 41-49.

Sheppard, S.B., Milliman, P. & Curtis, B. Experimental Evaluation of
On-line Program Construction (Tech. Rep. TR-79-388100-6).
Arlington, VA: General Electric, Information Systems Programs,
1979.

Stroud, J.M. The fine structure of psychological time. New York
Academy of Sciences Annals, 1967, 138(2), 623-631.

Walston, C.E. & Felix, C.P. A method of programming measurement and
estimation, IBM Systems Journal, 1977, 16, 54-73.

Walters, G.F. Applications of metrics to a Software Quality Management
(QM) program. In J.D. Cooper & M.J. Fisher (Eds.), Software
Quality Management. New York: Petrocelli, 1979, 143-157.

Wolverton, W.R. The cost of developing large scale software. IEEE
Transactions on Computers, 1974, 23, 615-634.

Woodward, M.R., Hennell, M.A., & Hedley, D. A measure of control flow
complexity in program text. IEEE Transactions on Software
Engineering, 1979, 5, 45-50.

Yau, S.S. & Collofellow, J.S. Some stability measures for software
maintenance. In Proceedings of COMPSAC '79. New York: IEEE,
1979, 674-679.

13-1

Comolexity of Large Systems

L. A. Belady

Domain of Study

At first approximation a program, Including a large

software system, is a piece of text, suitable for machine

processing. This processing Is usually compilation and

results in a bit-string of zeros and ones - the object code -

which, when loaded Into the machine, is capable of guiding

further processing of information. Obviously, the compiler

Itself is a program whose bit-string, derived from its

text, guides the machine to process other programs' text

into object code.

A program first of all must be correct. But we also

require that, during execution, machine resources be

economically used. Programs may be equivalent In the

sense that the same input data always processed into

the same output data, yet the programs may significantly differ

In their execution time and memory demand on the same machine.

Researchers active In the discipline of computational

complexity study algorithms from this resource demand point

of view. On the more empirical side, operating system designers

and modelers study the Interaction of programs sharing a

single computer. Their purpose Is to find better coordination of

program execution, to reduce Idleness of resources and to

Increase system throughout.

These studies thus consider the complex execution

d4nlaml of programs and seek answers to questions like: which

algorithm, expressed In the program text, Is best for a given

13-2

machine configuration; or which resource allocation strategy,

or parameter setting, is to be applied in an operating system.

Notice, however, that the structure, format or appearance of

the program text, and indeed the entire history of its development,

the way it was created, are considered irrelevant in this

context of machine performance.

At this point we would like to differentiate between

simple programs and large scale software systems, based

on whether the appearance and the process of creation of their

documentation are considered significantly Influencing the

total cost of their processing data. The text of a small

program is usually the intellectual product of a single

person or of an Informally cooperating and communicating team.

In the following we will call software those systems whose dynamics

of evolution demands the planned and coordinated activity of

a human organization, conducted along many phases of a project,

stretching over a several year long period of time.

This program evolution can be viewed as spanned by

a sequence of forms, or documents, the last one being the

text ready for compilation. Forms in earlier phases are, for

example, the requirement documentation, specification sheets,

design documents of Increasing detail, and all of the above In

different versions, as modifications are performed during the

lifetime of the software system. The process of creating one

form out of another is a human, and today mostly manual,

activity. This is the reason why this process is also the

t9 major source of cost and error. Since man to man communication

13-3

is a significant component of the process, the structure,

arrangement, availability, style and clarity of representation

of each of these forms strongly Influence cost and quality.

Simply put, the program Is not only the Input to the computer,

but even more importantly the major means of human communication

during development.

The current question is: how can we capture, possibly

numerically, properties of text and other software documents,

to aid prediction of development cost and schedule, and the

reliability of the final product, or to evaluate the impact

on the above of new tools and techniques? Informally, we

tend to use the word complexity to describe generically

the difficulty we encounter in developing software, or the

software's resistance to modifications. Note, however,

that we want measures of complexity related to a human

process, and not describe a machine procedure as is the case

with computational complexity, or with operating system allocation

studies. The latter are taken care of quite well somewhere

else. In the following we discuss quantification efforts

so far proposed for the programming process.

State of the art

There seems to be a consensus that complexity of

programming has to do with properties beyond and other than the sheer

size of program text or document. Intuitively, complexity has many

other factors: preparedness of the crew (training and experience),

connectedness of components, easy reach of relevant Information

(availability of files, libraries, experts); also, variety vs.

repetition, surprise vs. predictability, - to give Just a few

13-4

Ideas. Nevertheless, all these factors manifest themselves

In the amount of time spent on the task. Thus time itself

could be the global measure of at least the symptoms of complexity.

It Is the decomposition of aggregate time, and the

association of the resulting time components with particular

software attributes, which are the main Issues here. For example,

one could treat separately the complexity of the distinct

activities of specification, design, maintenance, etc. This

makes even more sense if we consider that the early phases

of modularly structured large software development are

characterized by intermodule allocation of functions and the

firming up of Interfaces. In contrast, later implementation

phases are Involved with the intermodule aspects of text,

expressed in the syntax of some language. In fact, many of

the complexity metrics proposed so far and mentioned below

can be for example classified Into these two categories.

In general., it is more difficult to caputre the complexity

of creation of software than that of modification. In fact, on

of the earliest published complexity metrics was deduced

from observations made on the evolution - maintenance and

enhancement - of modularly structured operating systems. This

metric was defined to be the extent to which a change penetrated

Into the software, measured as the fraction of modules changed

while transforming the old into a new system version. The

underlying Idea Is that the lesser number of components are

involved, the less complex, i.e. less time consuming it

takes to perform modification. Probably the effect Is not

linear: twice as many components to work with qiy.takemi-e -..

13-5

than twice as much time.

Given the outline of the variety of activities along the

life cycle phases, It Is not surprising to find so many, more or

relevant, papers on complexity In the literature. A recent

article [J published in the Proceedings of the Workshop

on "Quantitative Software Models" late last year presents a two-

dimensional classification of papers related to complexity

(Table 1).

Some of the papers study specifically software, and they

are grouped In the upper half of the matrix. Paper in the

lower half are listed because they also contain ideas applicable

to software, or are quite general and thus include software

systems as well.

The approaches of the papers vary significantly. Some

of them are descriptive and Informal, others are of quantitative

nature. The latter can be further classified as being based

on counting objects, expressing events In probablistic terms,

or making of organized observations. The four vertical

subdivisions of the table correspond to these classes of

approaches.

Another survey of the literature on complexity is an

RADC report []. Although classification In this latter Is

somewhat different, the message coming through from the

entire material Is clear: we are not short of ideas but we have

very few tested Ideas, or validated metrics which we could

safely recommend to measure and compare complexity of software.

The current state Is rather that of early exploration of

potential approaches.

13-6

Before presenting our recommendations for short term

research in complexity metrics we would like to further

illuminate the state of the art through a few representative

examples. To do this we quote a passage from the mentioned

survey E J. Other examples, or some examples ampliled, can

also be found In the paper on "Programming Complexity" by

Curtis in this same volume.

Some Examples*

"In the category of deterministic control flow complexity

the best known work Is McCabe's. With the control flow graph

of the program given, he proposes as complexity measure the

number of distinct execution sequences which are possible along

the directed graph. The application of this metric has become

quite widespread, because the number of paths is easy to

extract automatically from existing (and machine stored) programs.

This approach also appeals to intuition: a person reading a

program must mentally follow all control paths In order to fully

understand the program. Unfortunately the even more complex

activity of following data reference paths Is completely neglected

In this model."

"Another control flow based measure was proposed by

Woodward, et al. The basis of their approach Is program text,

amended by lines which Interconnect statements where control

may be passed between them. These lines occasionally cross

each other and thus create "knots". The complexity then is

* The examples are all referenced In the bibliography of C I

(..9 If ln | l I 'l B Il

13-7

assumed to be proportional to the knot-count. Indeed, well-

structured, easy-to-ready programs have less knots, but

again data references are not included here (although the knot

method could include data graphs as well)."

"Also related to the above approaches are Cobb's "reachability"

measure, Myers' extension to McCabe's model, and an early paper by

Farr and Zagorsky proposing the density of IF statement as a

measure of complexity."

"Significantly different is the approach taken by Yin and

Winchester. Here data flow complexity Is considered basic,

and the associated graph's departure from its spanning tree is

defined to be the measure of complexity. The rationale Is that

In a tree a unique path leads to each node - a sort of minimum

complexity.

"The most comprehensive of the deterministic approaches based

on program object counts is unquestionably Halstead's software

science. It is based on the four counts of: distinct operators,

operands, and total occurrences of operators and operands In the

program. From these numbers bounds and estimates of program

size, programming effort, etc., are derived. The approach

has received considerable attention. Often, experimentalists

summarize their own results in terms of Halstead measures, or

test and verify the claims of software science. Such work

has been reported for example by Curtis."

13-8

"There are too many other deterministric proposals to

mention them all. Due to Its originality, however, we cite here

Mills' proposal to measure complexity of a program by the length

of text necessary to prove Its correctness. (Will this motivate

for simplicity?)"

"For modular systems an example Is the Belady/Lehman model

In which complexity of system modification Is captured as the

ratio of modified-to total number of system components (modules).

Clearly, if modifications get diffused into a larger portion of

the system, then it must have been more intertwined and complex

than a system in which modifications remain confined and localized.

The approach has been successfully used to predict modification

workload of a large operating system which has been evolving

over a ten year period."

"However Interesting and promising, Information theory

based approaches are rather rare in the literature and appear

concentrated either around the study of probabilistic algorithms

or of interconnected systems in general. More specifically

for program systems, Belady and Bellner attempted to capture

the complexity of program evolution by Introducing distributions

over the set of modules of the probability that (a) a change

hits a given module and (b) that another module becomes

Impacted by the change. The scheme Is formally quite close to

the entropy approach of van Emden's... Another, earlier,

effort by Haney models the change propagalon by modules as

nodes. Unfortunately, very little experience exists

I-_) with these approaches and at present they are subjects

of research".

: A

13-9

"There are numerous papers In the literature on readability,

complexity of comprehension, frequency distributions of words

and symbols in natural languages as compared to program symbols,

many based on probability theory. But again, experience with

respect to their usability is practically nil."

"Much more promising are the empirical approaches. In one

of the earliest studies, L. Weissman at the University of Toronto

Identified a number of program constructs and attributes and

ranked them according to the associated relative difficulty which

a group of students encountered while programming. By implication,

a construct is more complex the more difficult it Is to apply and

understand it In a program. Encouraged by earlier results, recently

more professional psychologlest turned their attention to the

empirical evaluation of programming complexity. They usually

conduct joint efforts with computer scientists, with the

objective to understand human factors of programming tools and

techniques and to test in practice the measures arrived at by

speculation, which would otherwise be doomed to oblivion."

Potential Imoact

Although reasons for using complexity metrics are manifold,

ideally one would like to extract from measurements and

observations a small set of numbers which could be used to

predict quality, which In turn may help estimate maintenance

load, and cost of further development and enhancement. In

addition, It would be important to compare and mutually learn from,

projects on different products and under different circumstances -

'U

13-10

somehow along the line of "model rules" as applied in

experimental physics. Also, complexity metrics could be

instrumental in deciding whether a piece of software is ready

for retirement if it Is so complex that modifying it would

cost more than redesigning it from scratch. Note that this implies

the need for know-how to predict costs of both modification and new

design, the latter requiring the application of advanced

tools and techniques, usually not available for work on the old version.

There are some other, perhaps less Important, applications

of these metrics. Programming styles could for example be

classified, and programmers recognized based on programs they

wrote. Similarly, language classification could become

more meaningful, at least as applied to the ranking of

programmer/language pairs or program/programmer/language

triplets. But detailed discussion of these issues is

certainly beyond the scope of this writing.

Recommended Short-term Research

As already Indicated, most of the early work on software

complexity involved ad hoc, Isolated and uncoordinated

efforts. As a result, the definition of objects (for example

line of code, language constructs) In the domain of individual

studies seems quite arbitrary, thus preventing systematic

comparison of either different metrics, or measured values of

the same metric applied to different systems or environments.

Nevertheless, we should not Ignore some promising results

(-, already reported, or the many efforts In progress. It is

therefore necessary to

13-11

A. Standardize terms and dimensions of observable

and measurable attributes, that of programs and

of the development/maintenance process, such

that ongoing efforts be not disrupted and,

Instead, exchange of experience among them

encouraged. This research effort, based on

already existing reports and data, should be

sponsored by DoD rather than a smaller organization,

In order to enlarge the data base and to enforce commonality,

We already mentioned that quantification of from-

scratch design and development of large software could be

too hard a nut to crack. It is therefore recommended that

B. Study of patterns in trends and measurements of evoinLg

large systems be conducted, using definitions as

suggested in A. The resu~ting data should then

be used to build models of software evolution,

which In turn can be used to explore alternative

approaches more rapidly and less expensively

than with full scale experimentation. A by-product

of this effort could be metrics for complexity of

maintenance and enhancement.

We feel that probabilistic, or Information theoretical,

models of structural complexity, some of them studied already,

should be refined by involving information theorists. There-

fore we recommend that

C. Interdisciplinar, research be started In the area

(-)

13-12

of structural complexity, employing computer

scientists, statisticians and Information theorists.

Also, concepts such as locality (of information in

this context), so successfully applied in program

execution dynamics, should be examined and

experimented with to study difficulties and the

impact of tools and techniques on development and maintenanc

A final note: complexity studies, such as complexity

of computation, related to the execution time behavior of

programs, are in good hands, and the corresponding efforts'

do not need reinforcement. It is the evolution dynamics

of large software which needs attention.

(

13-13

Bibliography

DACS Quantitative Software Models March 1979.

Belady, L. A. Survey of software complexity measures. Proceedings
of the IEEE NY Poly Workshop on Quantitative Software Models,
Kiamesha Lake, NY, October 1979.

Lehman, M. M. Programs, programming and the software life cycle.
Special issue of IEEE Proceedings, September 1980.

Curtis, B. Measurement and experimentation in software engineering.
Special issue of IEEE Proceedings, September 1980.

14-1

SOFTWARE MAINTENAN~CE TOOLS AND STATISTICS

IN THE LIFE CYCLE OF A COMPUTING APPLICATION*

by

MERVIN E. MULLER

Director, Computing Activities Department

World Bank**

Washington, D.C.

June 3, 1980
(Revision of May 8, 198O;

*Prepared for "Meeting on Software Metrics," Professor Alan
J. Peris, Chairman of Software Metrics Panel, National
Academy of Sciences Auditorium, June 30, 1980.

**Coments made here do not represent official views of the
World Bank.

14-2

Software Maintenance Tools and Statistics

in the Life Cycle of a Computing Application

by

Mervin E. Muller

Abstract

Many of the activities involved with the maintenance of computing

applications suggest areas of research into needed software metrics.

Improvements in software metrics, in turn, can lead to more effective

maintenance. Maintenance of a computing application tends to include nore

activities than are appropriate, and maintenance is typically more complex

and costly than desired. In most respects we lack the tools and statisti-

cal techniques to gain an adequate picture of what is going on. We need a

conceptual frame,zork for maintenance and a related set of software

metrics. These objectives raise a series of research questions, some of

which are addressed in this paper.

The use ,, a life cycle model is reviEwad as an aid in understanding

what software maintenance tools and statistias can offer. Appropriate

perspective is sought through better understaiding of the possible rela-

tionships among aintenance, enhancewent, and replacement. Activities

affecting the maintenance of computing applications require meaningful

data and analysis, and for this purpose several concepts are introduced,

namely: a) Attributed Cause and Attributed Need, b) Contamination Effects,

c) Cascading-Causal Chains and Linkages, and d) Indirect and Direct Tools.

The role of statistical theory and application is explored in order to

indicate how statistics can help guide future research on needed software

maintenance tools. Areas of needed research are outlined, together with

some pitfalls to be avoided in pursuing the research challenges.

(J) June 3, 1980, replaced version of May 8, 1980

14-3

I. INTRODUCTION

The expenditure of resources on the maintenance of a computing

application can be substantial. To what extent are such expenditures

necessary? Can the expenditures be reduced by different ways of carrying

out the steps leading to the design, implementation, and use of a conput-

ing application? Maintenance of a computing application is a little

understood subject, and therefore its true role should receive special

attention. It is not particularly difficult to define maintenance as is

done below in Section 2, or to specify the activities associated with it.

However, it is often surprisingly difficult to collect uncontaminated data

to measure the effects of various policies or factors which influence the

need to perform iaintenance, or to determine the amount of effort that is

spent to perfori maintenance. I believe that considerable research effort

needs to be ad..i'ssed to overcoming the obsta:les mentioned in this paper

if appropriate software metrics are to be deeloped to aid in understand-

ing and managing maintenance activities. In)articular, there is a need

for software tools to aid both the mAinteranx, activities and the collec-.

tion of relevant data to support meaningful analysis. Statistical theory

can be an effective aid in deciding how to collect, analyze, and present

data underlying the software metrics.

2. WIIAT IS MAINTENANCE?

Depending upon who is asking this question, or who is answering, one

can either fail to appreciate its complexity or be so absorbed with the

0

14-4

complexity that useful communication does not take place. I have found

it useful to answer the question by providing two definitions, maintenance

status and maintenance work [Muller (6)].

Maintenance status. For practical purposes here, let us consider the

set of materials, including the program (or package, or system) and all

related documentation and test data, as a computing application. The

application should be defined as being in maintenance status if it has

been tested and distributed to the intended users on the assumption that

it can provide the capabilities that were specified for the application.

Maintenance work. Maintenance work on a computing application in

maintenance status is that effort spent on 0-anging the actual programming

(without enhancing the scope of the application), performing tests related

to programming ')r programming changes, chan~ing the documentation or test

data, or proiiing assistance to those who Live difficulty using the com-

puting application. Maintenance work can also become necessary because of

environmental changes such'as the need to change controls due to equipment

changes or oporiting system changes. In addLtion, maintenance work can

relate to chang.ng procedures to use the arrlication, training people in

how to use the application following a change, or to ensuring that changes

have been distributed to the user and correctly incorporated into the

user's installation.

As we shall see below, other types of activities can masquerade as

maintenance and many distortions arise from this source.

14-5

3. Why Consider a Life Cycle Approach? The Relationships among

Maintenance, Enhancement, and Replacement.

A life cycle model can help one to better understand and measure the

development and maintenance of a computing application. There is a rich

literature available on life cycle models, and the general conceptual

framework helps to identify and relate the various stages throughout the

life cycle of a computing application, illuminating the relationships

among then--in particular, maintenance, enhancement, and replacement of

the application. Maintenance, enhancement, and replacement effort can be

given consistent" definitions within a life cycle framework, although in

the real world these stages in the life cycle model are often not easy to

distinguish in terms of the available data. Moreover, the physical life-

cycle analogy is sometimes indistinct when apnlied to the intellectual

effort represerted by a computer program. I. is because it is difficult

to translate the desirable characteristics oi a life cycle model into the

real world of collecting and analyzing data related to maintenance activi-

ties that many interesting and challenging reiearch problems in software

metrics arise, some of which are considered ii, later sections.

4. Factors Influencing Maintenance and the Selection of Metrics

There are both technical and psychological factors that affect what

is accomplished as maintenance activity and these factors influence the

possible choice of data to establish useful metrics. These factors are

elucidated in the next few sections from several different viewpoints to

14-6

illustrate how data are subject to contamination effects and activities in

the life cycle that precede or follow maintenance activities.

5. Attributed Cause and Attributed Need

5.1 Introduction. The title of this section identifies one type of

information contamination in relation to maintenance that occurs due to

psychological factors rather than technical considerations. I know of no

single and consistent process to eliminate the finger-pointing that arises

between the user and developer of a computing application when a user

asserts that the computing application is "working incorrectly." Often

one sees work oa a computing application that is done as a maintenance

task when in fact the resources are really teing expended for an enhance-

ment. The misclassification of effort as maintenance can arise either

because the pe-son incompletely or incorrectly specified his need in the

first place, a, because the developer of thc computing capability has

misunderstood 3r failed to provide the "needed" capability, or because

needs have charged. What an uninvolved observer can detect, usually after

the fact, is a defective communication bet~uen the "user" and "developer"

of a capability about an attributed need or Lhe attributed cause of dissa-

tisfaction.

5.2 "Sleeping dogs" and "open patients". It is often the case that

renewed user attention, or new users, will awaken the need ("sleeping

dogs") for doing something about an application that has escaped attention

" _)

14-7

or has not been considered important enough to warrant formal maintenance

in the past. Similarly, progranrwers frequently notice, during mainte-

nance, things that need correction or enhancement (i.e., while the patient

is open) and proceed to maze the necessary changes. Far from being harm-

ful, these behavior patterns may bring about significant improvements;

however, they tend to distort our data on maintenance work.

5.3 Are some "bugs" acceptable? Most organizations will permit a

needed maintenance change to a program, but many organizations require

justification to establish why an enhancement is necessary. This adds to

the information contamination. In an ideal situation, there would be no

blame or no penalty to the user or developet so that one could easily

separate the need to perform a maintenance or enhancement activity. Clear

and complete j.,sign specifications may produze better accuracy. I believr

that part of tLe problem arises because of the mistaken belief that a coL-

puting capabilLl:y can and should be debigned, implemented, and used, in a

single step. Far the foreseeable future I believe a partial solution to

this problcm wauld be to have computing ap?.ications evolve through a

series of design-implementation-use iteratiois. However, this iterative

process requires careful data identification to separate maintenance,

enhancement, and replacement activities.

The research questions that arise here relate to setting-up reprodu-

cible human factor experiments to understand either how to avoid the

attributed need, attributed cause" syndrome and its resulting data con-

J..

14-8

tamination, or how to adjust the data to offset the effect of human fac-

tors. One should question how much priority should be given to such

research effort, because of the uncertain pay-off. However, to make sig-

nificant progress in software metrics for maintenance work, this problem

must be overcome.

6. Contamination Effects

6.1 Introduction. Since contamination of data may result when users

and developers of a computing application treat an enhancement requirement

as a maintenance requirement, this problem might be reduced or avoided by

having the main:enance done by someone other than developers, though this

creates an inevi.table transfer cost. However, there are also other forms

of misclassification. Various stages in th! life cycle affect tasks

defined as mai.!tenance, and therefore contribute to the contamination of

data identifying work done as maintenance. There are other types of con-

tamination thar also need to be understood and identified before research

on software metrics can aid designers and maintainers of computing appli-

cations. Some are discussed below.

6.2 Cumulative Effects of Changes. The life cycle model seems

most appropriate for a mechanical device subject to wear. For a computing

application, the analogue of wear is the process of "deterioration" that

occurs to a computing application as a result of maintenance or enhance-

ments, or accommodation to shifting user needs. The deterioration or

14-9

quasi-deterioration can be in the programs, test data, or documentation.

The end result is that a program or piece of documentation no longer has

an evident integrity of design, or perhaps that the coherency of its

design is no longer present. It could be argued that "pure" maintenance

activities should not affect the useful life of a computing application if

they were not contaminated by a concealed element of enhancement. Unfor-

tunately, several myths have developed around typical attempts to maintain

programs. There is a prevalent belief that computing applications become

uninaintainable because of the cumulative effects of maintenance activi-

ties. Many applications are therefore replaced because the "old programs

can no longer b2 maintained." With the contamination of data related to

maintenance, enhancement, and replacement, we find little valid data

available. Maintenance must be studied in relation to the place it prop-

erly occupies in the life cycle. What is reeded is research to measure

and elucidate ihat is meant by program "detvrioration." The purpose of

this research should be to provide guidance on how to perform maintenance

rigorously will.out disturbing the integrity of the program. The research

itself can become contaminated, if it fails to take into account the

maintenance of test data and documentation consistent with the program.

A life cycle model with sufficient detail might also help to distin-

guish between "deterioration" and "obsolescence" with respect to mainte-

nance. Even if programs, test data, documentation, or controls, have not

deteriorated, their future maintenance cost could be significantly reduced

if they were replaced by newer techniques--for example, higher level

14-10

languages, table or parameter driven programs, data base systems, test

data systems, a documentation system, or newer job control systems. In

order to justify the cost of making replacements, one needs to forecast

future maintenance demands, and this requires valid data and models.

The life cycle model can facilitate making reliable predictions of

the cost of various stages of a computing application. Such cost esti-

mates are useful in deciding to replace rather than maintain an

application--I.e., if the cumulative actual cost of maintenance is near or

beyond that amount adopted as the criterion for eliminating or replactn4

the application.

6.3 Distortions due to faulty use of controls or documentation.

When neasuring the effort spent on maintenance activities, the data nust

be identified w.ith sufficient precision to d.stinguish effort spent i:n

attempting to cetect alleged bugs that are thvught to exist because the

user failed to understand the controls or the documentation. The resolu-

tion of such misunderstanding can require significant amounts of tine.

Such effort shtuld be a signal to review the controls and documentation to

determine if they are faulty or themselves need maintenance. Time spent

on such evaluations and time spent on modifying controls, including

preparation of clearer error messages, or documentation, should itself be

considered a necessary maintenance activity but one of a different kind.

Software metrics should permit separate identification of the time spent

on detecting such limitations, correcting the limitations, and making pro-

13j

14-11

grain changes if they are really required. 1

6.4 Distribution Effects. When a computing application is distri-

buted to multiple users, usually at multiple locations and possibly using

different operating systems, one should be aware that possible distor-

tions can easily occur in the data related to maintenance. There are many

opportunities for contamination. For example, some users may fail to have

releases of the controls, programs, documentation, or test data leading to

distortions such as those mentioned above in Section 6.3. More subtle

problems occur when a sequence of several maintenance items have been dis-

tributed and not all have been incorporated, or some have been incor-

porated incorrcctly. These problems can be attributed to defective admin-

istrative proce-dures of distribution; however, there may also be a techni-

cal failing: it the computing application ha. contained sufficient diag-

nostic capabil)ties, the omissions or errors night have been detected,

perhaps should have been. Therefore, one research problem ought to be hou

to specify effcctive diagnostic capabilities. The challenge of software

metrics in thb! situation would be to measure the cost-effectiveness *nd

necessary trade.-offs in development of needed diagnostic capabilities.

6.5 Diagnostic Limitations of Test Cases and Data. How can one

measure the cost of incorporating diagnostic capabilities in an applica-

tion, including both the design and maintenance of such capabilities, and

the overhead burden of executing the application when the diagnostic capa-

I)

14-12

bilities are included? Without better awareness of the cost of the prob-

lems cited in earlier sections, one will have difficulty in estimating Lhe

benefits derived from the presence of adequate diagnostic capabilities. A

related activity of bilding and using these diagnostic capabilities is

the effort required to modify them as the maintenance of a system requires

changes or incorporation of additional diagnostic capabilities. An addi-

tional contamination effect may be introduced because changes to the diag-

nostic capabilities may not be truly maintenance activities but in fact

enhancement or replacement activities.

6.6 Malfunctions due to Equipment or Operating System. Often the

consequences attributed to a maintenance activity can subsequently be

traced to a problem with the equipment or the software of the operating

system. Adequate diagnostic tools, such as -hose mentioned in Section

6.5, can aid in' identifying and separating thi causes of the problem. It

is very temptirg for those involved with maintenance activities to clas-

sify a problem as due to the hardware or the operating system. However,

the result mey be to mask a deficiency in the application or to c(ntarik-

inate the data iy reporting that time spent to fix a deficiency was spent

to ascertain that the cause of the problem was the hardware or operating

system. One could argue that if the computing application is well

designed there should be few, if any, instances when the cause of a repro-

ducible problem due to hardware or the operating system cannot be quickly

detected. The question of the confounding of such problems with problems

% I

14-13

with the application, and how to distinguish these problems is an impor-

tant challenge for those developing software metrics.

6.7 Unintended or Unexpected Uses of the Application. Often one can

observe the spending of considerable effort on maintenance activity, only

to discover afterwards that an attempt was made to use the application in

an unforeseen way by using the controls in an unanticipated manner or pro-

viding data which created unforeseen calculations. The situation raises

additional questions of how to ensure adequate data identification. It is

a demanding research problem to specify what kinds of software metrics

will be useful here. Even with valid data, one still confronts the

often-mentionea confusion over whether or not to make changes ostensibly

as a maintenan,.e activity to cope with the user's problem.

6.8 Errots Introduced by Maintenance. :f a sequence of maintenance

tasks has been performed and it is later discovered that one or more of

them are in error, should further corrective maintenance effort be attri-

buted to the Scsign and implementation of the application or to faulty

maintenance efforts? Data contamination from this source creates a seri-

ous difficulty to those who want to understand the interactions among

design, implementation, maintenance, enhancement, and replacement. The

need for software metrics is undisputed, but it is not clear how best to

proceed. Some of the difficulties relate to the cascade effects addressed

In the next section. See also Section 8.

14-14

7. Cascading-Causal Chains and Linkages

The life cycle model is a formal way of acknowledging the interdepen-

dence of the various stages of work on a computing application from the

inception of the planning. However, the model by itself does not have

sufficient granularity to provide adequate event identification so that an

action taken in an early stage can be traced to show its impact on subse-

quent stages. The interdependence of events at different stages needs

more attention than at present, and a much richer data structure will be

needed in order to identify events and the associated data. Physical

phenomena are sometimes identified and analyzed as a set of cascading

events with lintages or causal chains. In such a formulation, under some

reasonable assumptions, one can sometimes decribe a process as a sequence

of transition eients, simplifying both the data collection and storage,

and the data analysis. This type of formulEtion may be useful to under-

standing ho: dtsign and implementation alteinatives influence maintenance.

Otherwise one must consider analytical approaches, which are far more con-

plex, or lack Eafficient detail to provide Insight. A useful research

question is whecher or not such formulatio,.r are adequate. Until such

research on software metrics is undertaken, we will hear many claims about

the virtues of one or another particular approach, with little if any data

to support or reject the the proposed approach, be it top-down, bottom-up,

structured, or something else.

Until we support research on metrics we will find it difficult to

justify any particular design or lplementation approach. For example, I

_6_j

14-15

believe that a coriputing application which is based on a modular design is

easier to design, test, document, and maintain than one that does not use

a modular design. However, there is little actual evidence bearing on

this question, one way or the other. Furthermore, without diligent study

we will not know why a program module included in a modular design fails

to maintain its modularity during modification as part of a maintenance or

enhancement effort. Without further development of software metrics, one

can expect to see a continued flow of misleading or inconclusive results

on this question, because of contamination effects that could have been

taken into account through a cascade or causal-chain approach.

8. Indirect and Direct Tools to Aid Maintenance

Two classez; of tools are needed to aid our understanding of the

maintenance pr)cess and to aid in establishing software metrics. The

tools are needed to support the collection cf data of the comprehensive

types suggesteJ in earlier sections. Without such tools it is unrealistic

to expect that :he burden of data collection, retention, and analysis will

take place aL a level and on a scale that it needed.

Indirect tools to aid maintenance shouic come out of efforts to

establish software metrics. These tools are indirect since they involve

actions taken at other stages of the life cycle. Such tools should gen-

erate information to influence policy and planning decisions--for example,

decisions to design and implement computing applications based upon using

modularity of design, to require that applications include data collection

]I

.). i l. . . n m l [

14-16

capabilities to diagnose performance and to aid maintenance, or to develop

an application as a sequence of iterative steps.

Direct tools are those that immediately affect how maintenance is

done. These tools relate to the collection, retention, and analysis of

valid data about the maintenance process, whether it be administration,

control, programming, testing, documentation, training, or user assis-

tance. [See, for example, Allen (1)). One of the most promising tools is

the integration of the development and maintenance of prograias with the

development and maintenance of documentation. An example is the

Programmer's Workbench, developed for use on UNIX. [See, for example,

Bianchi and Wood (2), Dolotta and Mashey (3), Feldman (4), and Ivie (5)].

With such tools it should be possible and cost-effective to retain an

institutional history of all changes and to support a rich enough coding

structire to vrilyze cascading or causal-chains as described in Section 7.

However, to maka these tools effective, one cust use them from the incep-

tion of the desig-;n of a computing application. One must adopt them out of

appreciation for the interdependence of the virious stages of the life

cycle. Such tools must be included as an integral part of organizing how

one performs maintenance activities. Otherwise, I fear that the identify-

ing and collection of data on what takes place as maintenance activity

will be viewed as an avoidable overhead cost or as an unnecessary burden

on those doing maintenance, and the information will not receive adequate

attention.

4 __.-

14-17

9. Human Factors

In earlier sections I have already mentioned how data related to

maintenance can be contaminated as a result of failing to address human

factors. The need to address the influence of human factors on developing

effective software metrics is clear. What is not clear is how to proceed.

Human factors often affect what we are trying to measure. To understand

the implications of this for software metrics, we will have to establish

well-designed and reproducible experiments. Such experiments present a

challenge that is shared with all of the social sciences that depend upon

statistical theory and techniques in order to make general inferences from

a set of experitaents. Much of the current literature on measuring the

influence or tle quality of effort devoted to software development or

maintenance raises more questions than useful answers. One area where

measurement seeris to be effective is the evaluation of programming apti-

tude. (See Wole (7) and (8).] In this casL, for example, using measured

aptitude as a .ontrol variable, one could introduce a series of interest-

ing questions roncerning how programiaer aptitude affects maintenance

activities.

10. Role of Statistics

The possible role of statistics in software maintenance is suggested

by the concern of statistics with the theory and application of methodol-

ogy for efficient and effective data collection and analysis. Thus in

many ways, the modern theory of the design of experiments can aid in

(~~)

14-18

experimentation to find good software metrics or in understanding the

influence of human factors. Another part of the theory of statistics is

related to modeling. I believe that modeling, based upon statistical

techniques, will help us to: a) cope with and understand the conplexity of

software metrics; b) develop methods by which we can predict the influence

of factors affecting software; c) aid those making decisions affecting

investments in software, and d) provide tools for selecting among alterna-

tive methods for developing software.

If one accepts the usefulness of the life cycle approach to model

building for software metrics, then I believe that the role of statistical

techniques is vital to exploring model building as an iterative process.

In particular, statistical techniques can ail in each of the iterative

steps of conject.ure, model building, data collection and analysis, model

verification :,, modifications based upon model experiments, and model

acceptance and use.

11. Research troblens

Consistpnt with the objectives of the reeeting for which this paper

has been prepared, several research questiat. have been posed, following

an explanation of why specific software metrics are needed and how this

generates a need for research.

Let me review some of these questions:

* Section 3 - The complex interactions among maintenance,

enhancements, and replacement. The need for

14-19

better data and analysis to understand what

takes place.

• Section 5 - Attributed Cause and Attributed Need--

determine whether to have a one-step or

iterative approach to developing computing

applications.

. Section 6 - Contamination Effects--cumulative effects of

changes, distortions due to faulty controls or

documentation, what is meant by deterioration,

distribution effects, diagnostic data limitations,

separating the influence of hardware and software

malfunctions, effects of unforeseen uses, and

error corrections introducing new errors.

. Section 7 - Cascading - Causal Chains and Linkages--how to

collect, retain, and anaiy-e data when the

events that occur as maintcnance depend upon

events for an earlier stagi of the life cycle.

* Section 8 - Tools - the need for resca'ch to design tools.

. Section 9 - Human Factors--an almost urlimited horizon of

interesting research questions.

In summary, I have suggested that use of a life-cycle model should

aid the development of needed software metrics. However, many research

questions persist. For example, how can one be sure that with a life-

cycle view of development, software metrics can indicate when to replace,

K)

14-20

extend, or correct existing software? Can software metrics aid in decid-

ing how to replace, extend, or correct software? Merely defining the

universe of discourse may be difficult--for example, how does one distin-

guish between an extension, correction, or replacement of software? We

need to agree whether or not this distinction is important to the develop-

ment of software metrics, though I believe it is.

If we can agree on the importance of these distinctions, we should

next agree on the need for research to identify:

. what factors contribute to achieving good software

- development
- use
- maintenance

. what faczors contribute to accurate cost estimates of
- development
- use

- maintenance

9 what fictors contribute to establish.ng valid specifications

to be mot by a particular software jroduct.

12. A Closing Remark

I hope that this paper has helped the reider to face twin questions:

why are software metrics needed? How can one proceed to establish needed

metrics? I was pleased to be asked by the mecting organizers to concen-

trate on this neglected topic and to suggest research questions. Without

adequate attention to maintenance, we will continue to see unnecessary and

wasteful effort spent on maintenance, as well as premature replacement of

"old" applications with "new-replacement" applications without building

14-21

upon what already exists. I believe software metrics is a rich and chal-

lenging field for research and for the development of practical and useful

tools.

ACKNOWLEDG!IENT

I wish to thank George W. Barclay, Daniel Hoyle, and Leonard Stein-

berg for their helpful comments on an earlier draft of this paper.

REFE:RENCES*

(1) Allen, J. R. (1977), "Some Testing and Maintenance Considerations in
Package Design and Implementation," Computer Science and Statis-
tics: Tenth Annual Symposium on the Interface, eds. David Hogben
and Denis W. Fife, U.S. Department of Commerce/National Bureau of

Standards, Washington, D.C., 211-214.

(2) Bianchi, M.l., and Wood, J.L. (1976), "A User's Viewpoint of a
Programmer's Workbench," Proceedings of the Second International

Conference± on Software Enginecring, Institute of Electrical and
Ylectronic Engineers, San Francisco, 113-199.

(3) Dolotta, I A., and Mashey, J.R. (1976) "An Introduction to the
PrograMUL-'s Workbench," Proceedings Df the Second International
Conference on Software Engineering, Ynstitute of Electrical and
Electronic. Engineers, San Francisco, 164-168.

(4) Feldman, S.I. (1977), "Make - A Program 'or Maintaining Computer Pro-
grams," Computer Science Technical Repjrt No. 57, Bell Labora-
tories, Murray Hill, New Jersey.

(5) Ivie, E.L. (1977), "The Programmer's Workbench -- A Machine for
Software Development," Communications of the Association for Com-
puting Machinery, Vol. 20, No. 10, 746-753.

(6) Muller, M.E. (1977), "Maintenance and Distribution of Statistical
Software: Satisfying Diverse Needs," Proceedings of the Computer

* Note: Also consult general bibliography in the Proceedings

prepared by Shaw.

/N

14-22

Science and Statistics: Tenth Annual Symposium on the Interface

eds. David flogben and Denis W. Fife, U.S. Department of Commerce/

National Bureau of Standards, Washington, D.C., 205-210. -.

(7) Wolfe, J. M. (1971), "Perspectives on Testing for Progranming Apti- N

tude, Communication, Association for Computing Machinery, Proceed-

ings 1971 Annual Coniference, Chicago, Illinois, 268-277.

(8) Wolfe, J. M. (1972), "A Validation Study--Long Range Predictive Capa-

bilities of the Aptitude Assessment Battery: Programming Test,"

Programming Specialists, Inc., Brooklyn, New York, 13 pages.

(_).

15-1

A Scientific Approach to Statistical Software

Ivor Francis
Cornell University

Abstract

This paper supports the scientific approach to the study of all phases

of the development and use of software, with particular reference to

statistical software. It argues the case fo' including the user's view-

point in describing and evaluating software. This requires that quanti-

tative measures be defined to characterize a user's problem, to report

the accuracy of computed solutions, and to assess the usefulness of the

output. It requires that a set of standard test problems be assembled

so that experiments can be conducted to compare the performance of soft-

ware systems.

1. A Science of Software

In the early days of computer science the emphasis, as the name

implies, was on the computer, the hardware and the algorithmic impli-

cations of the machine characteristics. The person who wrote a program

would very likely be the person who used the program. Little attention

was given to user conveniences and protection, or to readability and

documentation of software. But as programs began to be exported,

attention was focused more on these software features. More recently,

15-2

as programs have grown into very large software systems, interest has

turned to the human, organizational, and managerial factors that influence

the quality and cost of developing good software.

Thus computer science has grown from a study of hardware to include

all these aspects of the emerging science of software. Marvin Denikoff,

in his introduction to the first meeting of this Panel in New Haven, pro-

posed that what is needed is the development of a science of software to

provide a methodology or justification for choices between various

computing software systems, either proposed or existing. Alan Perlis,

in his statement of purpose to the Panel in June 1979, asked the funda-

mental question, "Can there be assigned to software and the processes

associated with its design, development, use, maintenance, and evolution,

indices of merit that can support quantitative comparisons and evaluation

of software?"

The charge to this Panel, therefore, was to outline areas of study

and a structure for a science of software. The list of areas suggested

by this Panel will undoubtedly be added to in the future. In 1977

Halstead D B used the term "software science" in a restricted sense.

Fitzsimmons and Love [5], in reviewing his work, said that "the basic

concepts of software science [are] program length, program volume, program

level, language level, effort, and programming time," and are "based

entirely upon measures which can be computed automatically from a computer

program."

To this list we can add many other concepts, as other papers from

this Panel show, Including program complexity, language characteristics,

15-3

problem specification and performance evaluation, maintenance, accuracy

and user convenience, micro modelling of program development resources,

and organizational and managerial aspects of program development. The

Panel has chosen to adopt the concept of the "life cycle" of software to

organize these concepts, to be a model or paradigm for this science of

software. This model, borrowed from biology, will no doubt be supplanted

in time by an indigenous one, but it will serve for the immediate object

of organizing the subject, to aid our comprehension and communication.

For science is "a mental construct, by means of which a collection of

objective data is arranged in a model and expressed linguistically for

certain ends" (Dingle, [4]). The ends proposed by Denikoff and Perlis

above are the quantitative comparisons and evaluation of existing or

proposed software. The ultimate end is the improvement of the state

of the software art.

2. Characterizing Software

Having adopted the life cycle model to organize this science of soft-

ware, we can begin to characterize and describe the components of software

which are, broadly speaking, 1) specification, 2) development, 3) testing,

and 4) maintenance. Lists of the characteristics of each of these

components can be drawn up. We can also group the people who will inter-

act with this software into 1) managers, 2) computer scientists,

3) programmers, and 4) users.

15-4

We may then attempt to compile a list of desirable properties for

these lists of characteristics. But the desirability of some property

may depend on which group of people one is addressing, and what the in-

tended application is. Furthermore, some tradeoffs will have to be made,

for example between low cost and ease of use.

From these characterizations and desirable properties, possibly

with the help of some mathematical models, we can propose indices of

merit to support quantitative comparisons and evaluation of proposed or

existing software.

One activity which is central to the comparison of software systems

is the evaluation of performance, which consists of specification plus

testing. The term "performance evaluation" has been used to measure

completion time of workloads in certain machines, which is of paramount

importance to computer scientists. But to users, "performance" means

more: the user is also interested in the nature of the output from a

software system in response to the practical problem facing the user.

He is interested in the content and the form of the output, its

accuracy and usability.

In the next section we discuss these two aspects of the software

cycle from a user's point of view, and illustrate them with examples

of quantitative measures, or metrics, which have been used to make

comparisons and evaluations of statistical software.

3. Quantitative Measures of Performance for Statistical Software

Two questions that a potential user of some software will ask are,

"Will it accurately compute solutions to my problems?", and "Is it

sufficiently convenient to use, and does it present results in a suf-

ficiently useful form, that it will be worth my investment of money and

time in using it?" This user is asking for an evaluation of performance

which will require testing the software in the light of the specification

of his problems.

For many types of software applications the "accuracy" of a program's

output is well defined, for example sorting, information retrieval, and

maintaining payrolls: there is one correct solution. For some appli-

cations, however, there may not be a single correct answer, and the notion

of "accuracy" has to be defined. This is the case of many applications

in statistics.

An example of the need and usefulness of quantitative measures is

provided by the study of multiple regression programs, Longley [12J

compared the performance of several, widely-used multiple regression

programs by submitting a single test problem to each program, and

qualitatively comparing their computed solutions with an extremely

precise solution which he obtained using special subroutines on an ex-

tended precision machine. Chambers [3], in comparing the accuracy of

various algorithms for regression calculations, used the minimum number

of significant figures in regression coefficients that were in agreement

with those of a "best" program as a quantitative measure of accuracy of

an algorithm.

15-6

Beaton, Rubin, and Barone [1), however, showed that Longley's

precise solution was not the best solution for that test problem, and

they defined a "perturbation index" as a quantitative measure of the

difficulty of the problem to be solved, which incorporated the variance

of the data and the word length of the machine. Velleman and Francis [14]

argued that the use of the minimum number of correct significant figures

was inadequate to characterize the accuracy of a solution and proposed

other quantitative measures of accuracy.

Velleman, Seaman and Allen [15] used these measures of difficulty

of problems and these measures of accuracy of solutions in an experiment

which measured the accuracy of several programs as a function of the dif-

ficulty of a sequence of problems. Thus it was possible to plot the

"response curve" for a program, the accuracy of its computations for

problems of increasing difficulty. One would expect that accuracy

would decline monotonically with increasing difficulty, but this was not

always the case.

From such response curves it is possible to propose an index of

merit incorporating both accuracy and difficulty to evaluate performance

of competing programs, although a user would probably want to include

measures of cost and convenience into an index of merit. Note that a

physicist with very precise raw data may place greater weight on accuracy

in his index than an economist who might prefer to use a cheaper program,

provided it gave sufficient accuracy for well conditioned problems and

advised the user when it encountered problems that were too difficult for

it.

(9

15-7

Quantitative measures of convenience and usefulness have also been

used in comparing statistical systems. For example, Bryce and Hilton [2)

conducted an experiment to compare the difficulty of installation of a

number of statistical packages. They measured the effort of three

systems programmers in installing each of three packages, using a Latin

square experimental design. Francis and Valliant [10] describe an

experiment to compare the ease of use of two packages for novices, using

a simple cross-over design. Thisted [13] performed a further experiment

to assess the adequacy of user documentation and control languages of

three packages for an audience with some computer experience and

statistical training. Again, he used a cross-over design. Finally,

Francis and Sedransk [9] describe experiments, to compare the per-

formance of software for analyzing survey data. Indices of merit were

computed to measure tabulating power and the simplicity of the user

language. These two concepts, which are apparently qualitative, required

detailed, although admittedly debatable, definitions in order for them

to be represented quantitatively.

Quantitative representation of qualitative properties also made

possible a comparative review of over one hundred statistical systems,

which used a model based on the "life cycle" of a statistical analysis

to organize users' ratings of fifty-five program features, and compare

them with the corresponding developer's ratings. (Francis [7])

I A

15-8

All of these experiments, and others listed in the bibliography of

Francis [6], illustrate the need for the careful use of the techniques

of experimental design. Statisticians have a particular role to play

here in the choice of test problems and in removing the effect of the

many controllable and uncontrollable factors from the comparative measures

of performance.

4. The Effect of Evaluation on the Quality of Statistical Software

In 1973 the Section on Statistical Computing of the American

Statistical Association (ASA) declared its concern for the accuracy

of statistical software. It established a committee which prepared a

report summarizing the opinions of over one hundred contributors, in which

desirable characteristics of statistical software were listed and

discussed. (Francis, Heiberger, and Velleman [8]) Since then there

has been considerable improvement in the quality of at least the major

statistical program systems. During this time sessions on the evaluation

of statistical software have been held at virtually every annual conference

of the ASA and of the Symposium on the Interface of Computer Science and

Statistics. A growing interest has been seen in similar sessions of

COMPSTAT, the European Symposia on Computational Statistics.

The publication of the results of comparisons and evaluations of

statistical software has an effect both on developers and on users. No

standards have been established for either the development or the use of

statistical software. Some developers have given insufficient attention

to the accuracy of their product and to methods of protecting the user

4~)

15-9

against his misusing the program. Users, on the other hand, in publishing

the results of analyses in which computers have been used, typically fail

to identify precisely the software and hardware used. Publication of soft-

ware comparisons and evaluations encourages the developers to improve

their products., and prompts users, and more particularly editors and

referees of journals, to take a closer look at which packages are being

used in statistical analyses.

The goal of these comparisons and evaluations is to promote both the

best use of existing statistical software and the development of better

software. Through the comparisons of the performances of packages in

performing standard test problems, de facto standards for statistical

software, both existing and proposed, are established, standards which

will evolve over time as the state of the software art improves.

5. Further work

This paper has argued the need to evaluate software performance

with a user's perspective, that is, to specify and characterize the

difficulty of the problem, to test the accuracy of computed solutions,

and to assess the usability of the output, with particular reference

to statistical software. All three components of evaluation call for

quantitative measures. Implied also is the need for a set of standard

test problems and solutions which can be used to evaluate existing soft-

ware and write specifications for new software.

There is a need for well-designed experiments to evaluate certain

features of software, particularly experiments which compare at least

15-10

two software systems. There is a need for these experiments to be

replicated under different environments.

To capture the many dimensions of problem difficulty, accuracy of

solutions, and usefulness of output by a few quantitative measures

presents challenges both applied and theoretical. To carry out the

many and continuing experiments necessary to monitor the quality of soft-

ware will require the contributions of many researchers.

(9

15-11

References

[1] Beaton, A. E., D. B. Rubin and J. L. Barone, "The Acceptability

of Regression Solutions: Another Look at Computational Accuracy,"

Journal of American Statistical Association, 71, 353, 158-168

[1976].

[2) Bryce, G. R. and H. G. Hilton, "Local Installation of Packages,"

Proceedings of the Statistical Computing Section, American Statis-

tical Association, 13-15, [1975].

[3] Chambers, J. M., "Linear Regression Computations: Some Numerical

Statistical Aspects," Bulletin of the International Statistical

Institute, 45, Part 4, 245-254, [1973].

[4] Dingle, H., "The Rational and Empirical Elements in Physics,"

Philosophy, 13, 148-65, [1938].

[5] Fitzsimmons, A. and T. Love, "A Review and Evaluation of Software

Science," Computing Surveys, 10, 3-18, [1978].

[6] Francis, I. (editor), A Comparative Review of Statistical Software I:

The International Association for Statistical Computing Exhibition

of Statistical Software, IASC, Voorburg Netherlands, 658 pages, [1979],

17] Francis, I., "A Taxonomy of Statistical Software," to appear in

COMPSTAT 1980: Proceedings in Computational Statistics, Vienna,

Physica-Verlag, [1980],

[8] Francis, I. R. M. Heiberger, and P. F. Velleman., "Criteria and

Considerations for the Evaluation of Statistical Program Packages,"

American Statistician, 29, 1, 52-56, [1975].

15-12

[9] Francis, I. and J. Sedransk., "A Comparison of Software for

Processing and Analyzing Surveys," Bulletin of the International

Statistical Institute, 48, [1979].

[10] Francis, I. and R. Valliant., "The Novice with a Statistical

Package: Performance Without Competence," Proceedings of Computer

Science and Statistics: 8th Annual Symposium on the Interface,

110-114, [1975].

[11] Halstead, M. H., Elements of Software Science, New York: Elsevier

North-Holland, Inc., [1977].

[12] Longley, J., "An Appraisal of Least Squares Programs," Journal of

the American Statistical Association, 62, 819-841, [1967].

[13] Thisted, R. A., "User Documentation and Control Language: Evalu-

ation and Comparison of Statistical Computer Packages," Proceedings

of the Statistical Computing Section, American Statistical Associ-

ation, [1977].

[14] Velleman, P. F. and I. Francis., "Measuring Statistical Accuracy

of Statistical Regression Problems," Proceedings of Computer

Science and Statistics: 8th Annual Symposium on the Interface,

122-127, [1975].

115) Velleman, P. F., J. R. Seaman, and I. E. Allen., "Evaluating

Package Regression Routines," Proceedings Statistical Computing

Section, American Statistical Association, 82-83, [1977].

II

16-1

When is "Good" Enough?
Evaluating and Selecting Software Metrics

Mary Shaw
Computer Science Department

Carnegie I.lellon University
Pittsburgh, Pa.

June, 1980

Abstract: In assessing the use of metrics for software, it is important to consider the
quality of the metrics themselves. This has two components. First, we can determine
some of the statistical prop. rtios of the nieiric itself. Second, we can assess the way a
metric will be used and select one that provides appropriate information without excess
expense. This note discusses some issues about the validation and efficiency of
measurement techniques.

1. Introduction
This note addresses two questions related to the judiciois use of software mr3trics. The first is how

propow.d metrics should be described 3nd evaluated. The second is how to select metrics that are

cost-effective, in the sense that they striP e a reasonab!e balance between the ar icunt and precision of
the information delivered and the cost ol collecting and processing raw data.

Tho first question is of conceri to people who develop metrics. It pertai is to the criteria &ai

slhould bn used for evaluating metrics ar d the guidance that should be provide(to prospective users.

It covers. not only ways to state properti as of individual metrics, but also ways o validate the models

that unJ.srlie the metrics and ways to de :ide when it appropriate to introduce ne N metrics.

The second question is of concern t) people who use metrics. It pertains to criteria for deciding

w'ien imprecise measures offer good enough results -- that is, to wlo to determine the

cost-effectiveness of a metric. Many people succumb to the temptation to dan arid as much detail as

technologically possible, neglecting the costs of acquiring the knowledge which arise from its

acqui'ition. comprehension, and use. We have many examples of detailed models and complex

metrics: v.a .hould also look for some m .trics that are both less expensive and less precise.

In a broader sense, I am discussing tI e problem of developing literacy and ta ste in the construction

arid use of metrics. At issue is a pi,:ce of culture -- the attitude that we as sc entists and engineers

take toward all the work we do, the expectations that we is readers have of lichnical material, and

the standards that we as editors enforce for material under consideration for publicamtion.

16-2

2. Evaulating Proposed Metrics
The most desirable metric is a direct measurement of the property of interest. Unfortunately, such

measures are rarely available; they may be unavailable at the time they are needed, they may be

expensive to obtain, or there may be no known way to take a direct measurement. As a result, we

frequently resort to indirect measurements. When we do, we become dependent on an analytic or

empirical model of the system or process being measured.

It would be nice to have a common set of program dimensions -- a "basis" -- that is commonly

accepted by all investigators as the object of measurement. Unfortunately, we are far from agreement

on what might constitute such a basis for the measurement of software, so we tend to develop models

that are idiosyncratic in their choices of source data. In another paper in this report, I argue that a

serious attcmpt should be made to encourage the development of a common, consistent paradigm.

Whenever a metric is indirect -- based on a model -- two issues are involved in its evaluation. The

first is validation of the underlying model; the second is determination of the properties of tho

st3listics provided by the measurement technique. In the case of a direct measurem~r.:, only the

la ter is of concern.

Pa-t of the validation of a proposed metric should include a comparison uf its results with the

re wlts given h, .toritng metrics In addition to agreeing with other ways of mec 3uring the same thing,

a ie;.- metric shojld clearly provide an improvement over previous techniqu3s along at least one

di nension (e g some pfope rty of the measure or of the cost of its use).

Wc mu-A . discr.:tion in the staidards we set, however. Some measu es are based on static

atr. ly,is cf pr jrr text these will be deterministic. Other measures are basei on data gathered by

m nitofing t. ,. ecution of a program; although in a strict sense these may be deterministic, it is

of en not practicil to treat them that wry. Still other measures are based or human peiformance,

v,, ich is much more varia tile and far frc:n deterministic. Different standards must be applied in all

th .e cases. if. for example. correlation ,.oefticients are used to evaluate metrics, higher correlations

st.ould be evpected of deterministic than of nondeterministic metrics.

2.1. Properties of a Metric

We need to establish criteria for the evaluation of proposed software metrics. This section surveys

several properties that are recognized in other areas of measurement and may be pertinent for

sc Itware.

When a metric can be cast as a trdilional problem of statistical inforence involving estimation or

hypothesis testing, standard statistical techniques (e.g., [51 Chapters 9-11) can be applied. These are

~I

16-3

sufficiently familiar that there is no need to review them here.

Some less familiar concepts from psychometrics (e.g., 18] [6]) are also worth considering. These

may apply directly, particularly in productivity studies, or they may merely be suggestive of areas

where we need to establish criteria of our own. I will describe criteria for reliability and validity.

A reliability measure for a metric indicates how much confidence we can have in tire value of the

metric for a particular individual being measured -- a program, person, system, team, or whatever. It

can be thought of as a consistency measure -- an estimate of the degree to which repeated

measurement of an individual would produce the same result. The reliability of a metric may be

reduced by variability of several kinds:

" Obseiver varidbil,*:y refers to the possibility that the person taking the measurement may
not always record the same events in the same way. It is unlikely to be an issue for an
objcctive or analytic metric. but if subjective judgements are required of the observer,
they may lower reliability. If the observer is a machine, this may be referred to as
instrument variability.

* Subject variability refers to systematic or random changes in the individual being
measured. For example, day-to-day variations in an individual's typing speed and
improvement of his skill through time can both introduce variability.

" Environmental variability refers to u icontrolled factors that may affect measurement. It is
common, for example, for the systo n load in a time-sharing system to affect the reliability
of timings.

A iumber of methods are available for estimating the reliability of objective tests. The situation

arpears to be less well under control wheii the possibility for much variability exi.ts.

A validity measure for a metric indicaes how well it measures what it is supposed to measure.

S(veral kinds of validity are recognized:

* Content validity or face validity is cemonstrated by arguing that the que,' tions asked or
the data collecteJ is pertinent to v hatever i.% being measured. In other Nords, content
validity can be established by get:,ing an expert to say that the test m(asures what it
claims to.

o Predictive validity is demonstrated by showing a correlation between th'e result of the
metric and some criterion based on the future performance of the individual.

o Construct validity is an issue wrien a property is measured indirectly. Such a
measurement depends on knowin' a relation between the measured variables and the
property of interest. Construct valic ity is demonstrated by showing that this relation does
in fact hold.

In one sense, a validity measure should be straightforward, for validity is simply the correlation

between the metric and some criterion. In practice, however, the criterion value: may be expensive to
9

16-4

obtain or not immediately available.

It is important to note that reliability and validity are independent concepts: a test can be quite

reliable without being at all valid and conversely. In other words, the results of two tests may differ

because of measurement error or because different things are being measured. The two effects

should not be confused.

In addition to using general criteria as a matter of course, it is appropriate to set up specialized

criteria for particular classes of metrics, For example, Roberts [11] studies techniques for evaluating

computer-implemented text editors. She begins by setting up standards against which to measure the

techniques. In the abstract she says,

This thesis explores the possibility of performing an objective and thorough, but quick,

evaluation of text editors from the viewpoints of their various users. The criterion of
ob,,ectivty implict; that the evaluation scheme not be biased in favor of any particular
editor's user's model, its way of rpgarding text and operations on the text. As much as
possible, data should be gathered by observing people who are equally familiar with each
system, and when tests are analytic, the criteria for scoring must be unambiguous.
Thorouhjlness implik.s that many aspects of editor use be considered. Quickness means
that the tests are usable by editor designers. managers of word processing centers, or
other non-psychologists who need this kind of information but have limited time and
equipment resources.

In the thesis, she develops ways to ansver several different categories of questions. She develops

empirical methods and matching anal 'ic (predictive) models, then shows how well the (cheaper)

analylic methods do as substitutes for th ? (more expensive) empirical ones.

2 2. Models that Underlie Metrics

We have learned over the years that 1 rograms are easier to deal with when w- abstract from details

of the code to the important properties ci the computation. The same principle ipplies to the problem

ol managing the complexity of the me Isurement of a program. When we introduce a model of a

s stem. we are identifying certain prop(.rties as being of interest and suppress ng the rest -- which is

piecisely the same approach we use for program development. Kleinrock 19] has provided

fundamental queueing-theoretic model, for performance evaluation. Spirn [12] has used modeling

ex:tensively for evaluating paging syste r~s. Svobodova [131 presents a more general description of

modeling techniques, but does so in a h. avily hardware-oriented setting.

In an empirical model, equations are fit to observed data in an attempt to capture the information

contained in the data. Such models can be validated by determining the c(rrelation between the

equations and observed data (fresh data or the data on which the equations were based). A variety of

empirical models can be found in [2].

An analytic model, on the other hand, proceeds from an assumption that the process being

16-5

modelled is well understood -- at least to the extent that a mathematical description of the mechanism

can be written down. Parameters of such models may be tuned to correspond to actual systems, but

the underlying description may be selected as much for its mathematical tractability as for its exact

correspondence to observed data. Queueing-theoretic models for operating systems [9] exemplify

this approach.

Whether a model is simple or complex, empirical or analytic, it is necessary to determine how

accurately it matches reality. The techniques for validating models seem to be as varied as the

models. It appears that efforts to find tractable, perspicuous models that can be re-used extensively

in a variety of situations have considerable payoff potential.

The importance of validating a model critically can be demonstrated by an example. Feller [4]

relates a cautionary tale:

The iogistic distribution function

F(t) = 1/(1 +et/), >O (*)

may serve as a warning. An un!helievably huge literature tried to establish a tran-sccn,!'3ntal
"law of logistic growth"; measured in appropriate units, practically all growth processes
were supposed to be represented by a function of the form (') with t representing time.
Lengthy tables, complete with chi-square tests, supported this thesis for human
population3. for bacterial colonies, development of railroads, etc. Both Icight and weight
of plants and animals were found to folfow the logistic law even though it is theoretically
clear that these two variables cannot be subject to the same distribu ion. Laboratory
experiments on bacteria showed that not even systematic disturbances car produce other
results. Population theory relied on logistic extrapolations (even though they were
demonstrably unreliable). The only trouble with the theory is that not only the logistic
distribution but also the normal, the Cauchy. and other distributions cal be fitted to the
same material with the same or better goodness of fit [3]. In this comp(tition the logistic
distribution plays no distinguished role whatever; most contradictory il eoretical models
can be supported by the same obsorvational material.

Theories of this nature are sh xrt-lived because they open no nev ways, and new
confirmations of the same old thing soon grow boring. But the naive r,.asoning as such
has no, been superseded by corni ion sense, and so it may be useful tu have an explicit
demonstration of how misleading F, mere goodness of fit can be.

2.3. Standard Validation Tasks

In order to help establish the expectation that new metrics will be evalhiated against existing

cc mpetitors, it would be useful to have a set of standard problems, tasks, or p! ograms against which

new metrics can (should) be validated This role is played by sorting prcgrams for algorithmic

ccmnplexity, by the "readcr-writei" problem for process synchronization, by stacks for data type

spccifications, by the M/M/1 queue in performance evaluation, and by the fruit fly Drosophila

m.lanogaster for genetics. Such a prcblem or program can become a standard in its own right,

i': r

16-6

simply because so much knowledge grows up around it.

3. Selecting Appropriate Metrics for a Task
As software measurement is currently practiced, we can observe two unfortunate patterns. The

first is a tendency to use statistics uncritically; the second is a tendency to obtain as much detail or

precision as possible, without regard for the cost. We must recognize that there are legitimate

grounds for departing from the singleminded pursuit of exact measurements and detailed models.

The modern computer has an unparalleled capacity for producing data. The problem in applying

software metrics is to find appropriate measures and make sense out of the data, not simply to obtain

the data. It is important to bear in mend that collecting and analyzing statistics itself has cost, and

that many parts of a system may require analysis. When much of a system is not analyzed, or only

crudely analyzed, there may be little merit in going to great lengths to obtain exact measurements of

individual parts.

Imprecise measures are often good enough, and they should be cheap to compute. They are

particularly likely to be adequate in large systems where parts of the system other than the one being

m-asured are even less well analyzed or understood.

A user cannot make reasonable decisi)ns about the selection of a metric without data on both the

cost and the precision of the metric. Th:js the description of a metric should indicate how much of
what kind of data is required and how ex)ensive it is likely to be to collect the data and compute the

measurement. In addition, the description of the metric should specify the precision, reliability, and

va.idity of the results.

This point can be supported by citing a few specific examples:

Card et al [11 needed a model for pro -dicting the time it would take for exj ert users to execute
inleractive tasks on an interactive syste ii. They developed a model, the Ke' stroke Model, based

solely on counting keystrokes and other low-level operations. Validation showei a root-mean-square

prediction error of 21% for individual tasks. In addition, the model can be simplified in ways that

di ectly trade ease-of-use for accuracy.

Wulf and Feller [151 have developed a method for cheaply determining a figure of merit that

ettimates the improvement made by in optimizing compiler for various (compiler, machine>

combinations. The figure of merit repr .sents the code size of the optimized code, scaled to an

arbitrary standard. It relies on an assumption about hierarchy and independence among optimization

techniques. and it is limited to algebrai,. languages and conventional register-oriented machines.

Within those limitations, the figure-of-merit for a now <compiler, machine> combination can be

16-7

obtained by compiling and analyzing a small set of test programs; the time required is estimated to be

a day or two. Initial validation studies across several languages and machines indicate that the

figures of merit can be about 90% accurate (10% confidence level).

The "Fog Index" is a measure of the syntactic complexity of English text. Proposed by Gunning

[7], it relies on counts of sentence lengths and the density of polysyllabic words to obtain an estimate

of the number of years of education a reader would need in order to read a piece of text. The index

can clearly be defeated, for it gives no consideration to the conceptual difficulty of the material, only

to the sentence structure. Nevertheless, it proves a useful indicator to identify problem areas in

written material. It is of interest here because it delivers a great deal of information in proportion to

the (very small) amount of effort required to compute it.

A graphic demonstration of the tradeoff between precision and analysis cost is provided by

Euclid's Algorithm for finding the greatest common divisor of two numbers, m and n (say n>n). Knuth

[10](sec 4.5.3, pp.316-333) devotes seventeen pages to an empirical argument that in the worst case

the number of divisions required is approximately 1.9405 log 10 n. However, the observation that each

divisor is at least two, so the larger of the numbers under consideration must t-e halved at each stcp

leads immediately to a bound of 2 log 2 r, or 6.0206 logle n. If it is sufficient for your purposes to have

a bound that is only within a factor of aL out 3, the analysis to support the bouriJ is much simpler and

intuitively plausible.

4. Summary
In this note I have sketched some issues concerning the evaluation and solection of software

metrics. A number of questions remain ojpen for investigation:

" Can we identify a reasonably smali collection of techniques that satisfy a large fraction of
software measurement needs? 't would be unfortunate if we needet; to devise new
approaches for most new problems.

" We don't currently know which properties of a metric matter or how high we can
reasonably expect correlations, reliabilities, or other indicators to be. We have lots of
experience with particular modelt, but no good generalizations. How can we encourage
the process of generalization?

" How can we best draw on tradit onal statistics? In particular, how dc we (a) transfer
knowledge from statistical fields; (b) educate computer scientisis in statistical
responsibilities; (c) determine wh3ther tcchniques can be taken directl; from statistical
fields or whether they must be moJified for computer science?

" Do traditional techniques deal with all of our problems, or do we need new techniques to
cope with (a) the ease with which we generate large masses of data; (b) the fact that we
are still developing our models; (c) the apparent malleaibility of our mediujm and the ease

(9 with which we can blend models with running systems?

16-8

" Recent developments in programming methodology have emphasized the use of
abstraction and hierarchical organization to control detail. How can these program
organizations be exploited by the metrician? apply here?

" Performance evaluation techniques now address hardware problems quite successfully.
Are there significant differences between hardware and software problems, or do we just
have more experience with measuring hardware?

" Tukey [14] makes the point that conventional statistical techniques are useful for testing
hypotheses we have already formulated. Is software metrics now in such a state that we
need assistance in formulating the hypotheses more than we need help with testing them?
If so, we should be cautious about expecting conventional statistics to be applicable to all
our problems.

It is important to note that understanding is much more important than tools. Although

measurements may help us come to understand them, in the long run comprehension of the

underlying processes is critical to useful metrics.

5. References

1. Stuart K. Card, Thomas P. Moran, Allen Newell. The Keystroke-Level Model for User
Performance Time with Interactive Systems. Tech. Rept. SSL-79-1, Xerox PARC, March, 1979.

2. Data and Analysis Center for Software. Quantitative Software Models. U. 8i. Air Force, March,
1E79.

3. William Feller. "On the logistic law of growth and its empirical verifications in biology." Acta
Bi)theoretica 5 (1940), 51-66.

4. William Feller. An Introduction to Probability Theory and Its Applications. ,.ohn Wiley and Sot)s,
1956.

5. John E. Freund. Mathematical Statistics. Prentice-Hall, 1971.

6. Edwin E. Ghiselli. Theory of Psychoogical Measurement. McGraw-Hill, 1934.

7. Robert Gunning. How to Take tho F)g Out of Writing. Dartnell Press, 1964.

8. Paul Horst. Psychological Measurement and Prediction. Wadsworth, 196E..

9. L. Kleinrock. Queuing Systems, Volume 1: Theory. John Wiley & Sons, 1975.

1). Donald E. Knuth. The Art of Computer Programming. Volume 2: Seminutnerical Algorithms.
A Idison-Wesley, 1969.

1 . Teresa Lynn Roberts. Evaluation of Computer Text Editors. Ph.D. Th., Stanford University,

12. Jeffrey R. Spirn. Program Behavior: Models and Measurements. Elsevier Scientific Publishing
Company, 1977.

S_)

16-9

13. Liba Svobodova. Computer Performance Measurement and Evaluation Methods: Analysis and
Applications. Elsevier Scientific Publishing Company, 1976.

14. John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

15. W. Wulf, P. Feiler, J. Zinnikas, R. Brender. A Quantitative Technique For Comparing the Quality
of Language Implementations. In preparation.

I(

Annotated Bibliography on Software Metrics
Prepared for ONR Study Panel on Software Metrics

Compiled by Mary Shaw
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

12 June 1980

This bibliography includes the significant references from the papers in the panel report together

with other papers that have been identified as relevant to some aspect of software metrics. It is

interesting to note that almost all of the papers were published within the past ten years.

Contributions of panel members and other interested members of the program measurement

community were augmented with auhors' abstracts and reviews from Computing Reviews. The

source of each review is indicated in the annotation. No attempt has been made to make the

bibliography complete -- the boundaries of the field are too fuzzy and the nurber of projects is too
large. Nevertheless, the annotations of provided here should serve as a useful resource.

The format of the bibliography is patterned on a software engineering bibliography developed at

the University of Toronto in the mid-1970's [Barnard77]. The first section lists the papers on each of

several topics, and the second section provides complete citations and annotations.

The bibliography is available in Scribe format on the ARPANet. Contact Shaw@CMU-1OA for

details.

Authors of Annotations
Attribution Author and affiliation
Abstract Abstract of the cited paper
CR12345 Computing Reviews (review number included)
JES Jean Sammet, IBM Corporation
LAB L. A. Belady, IBM Corporation
MS Mary Shaw, Carnegie-Mellon University
RTS Richard T. Snodgrass. Carnegie-Mellon University
VRB V. R. Basili, University of Maryland

2

Topic Lists

General

Basili78c, Beilner77, Belady7ga, Boehm73, Chen76, Gepner78, Gi1b77c, QSMA79, Mohanty7g,
Schneiderman8O, Spirn77, Svobodova76

Surveys and Bibliographies

Atwood79, Barnard77, Basili78c, Belady79a, Calingaert67, Contil9, DACS79, Ferrari78,
Fitzsimmons78, Gilb77a, Jackson78, QSM79, Mohanty79, Schneiderman8O

Case Studies

Baker77, Basili75, Basili78a, Basili79b, Boisvert79, BrinchHanseri73, Browne7O, Card78,
Clark76. Ciark78, Ciark79, Freberger79, Gannon75a, Gannon75b, Gannon7l, Gehring77,
Griswold75, Gupta78, Hansen78, Jackson78, Myser78b, Rye77, Sammet7l,
Schneiderman8O, Weiss79, Wiltman77, Woodfield79

Models

Basili78c, Beilnerl7, DACS79, Gilb77c, Halstead77, OSM79

Modeling Concerns: Basili77, Basili78a, Card78, Card7ga, Card79b, Courtois77, Gehring77,
Lyness79, Mills76, Musa75, Naur78, Roberts8O, Sevcik74, Smith79b. Spirn77, Svobodova76,
Tuggle78

Structural: Bard7g, Basili77, BasilI78a, Belady79b, Boehm73, Booth79, Chanon73, Courtois77,
Denning78, Ellis78, Gupta78, Howden78a. Jones78, Kleinrock75a, Lyness7g, McCabe76,
Musa75, Parr8O, Putnam78, Sevcik74, Shaw74, Shaw79, Trivedi79, Walters78, Waters7g,
Wulf?'.

Empirical: Basili77, Basiti78a, Basili78d, BeladyTB, Cheng79, Cheung74, Chrysler78,
Dunsmore78, Elshoff76, Fitsos79, Fitsos8O, Freberger79, Goel78, Howden78a, Jeffery??,
Jones78, Laemmel78, Motley77, Myers78a, Schafer7g, Smith79a, SmithsO, vanderKnIjffl8.
Walston77, Walters78 Weiss79, Weissman73, Weissman74, Wolverton74, Woodfield79

Evaluation of Metrics

Basili78b, Basili78c, Basili79a, Bloom74, Boehm73, Boisvert79, Budd78, CurtisSO, deFreitas78,
Elshoff7B, Gehring77, Gordon79b, Halstead77, Howden7sa, Howden78b, Howden79,
Jackson7B, OSM79, Lyness79, Mamrak79, Sammet7l, Schnederman8O, Sevcik74,
Tugqle7S

3

Direct Measurement of Programs

(Belady79a, Schneiderman8O

Static: Alexander72, Baker79, Basifi75, Basifi77, Basili78b, Basili7fa, Basifi7fc, Betady79b,
Brailsford77, Chanon73, Curtis79, Dunsmore8O. Elshoff76, Fitzsimmons78, Foxley78,
Gannon75a, Gannon75b, Gannon77, Gordon79a, Halstead77, Jeffery??, Knuth7l,
Laemme178, Love77, McCabe76, Ryder79, Shaw74, Slavinski75, vanderKnijff78,
Wichmann7O, Woodward79, Zweben79

Dynamic: Ashby73, Barak78, Beizer7O, Bergeron75, Brailsford77, BrinchHansen73,
BrinchHansen78, Calingaert67, CambeII68, Cerf7O, Cheng69, Cohen74, Cohen7l,
Crochow69, Crowley79, Dearnley78, Elshoff76, Fitch77, Fong73, Gaines69, Griswotd75,
Hanson78, IngaIls7l, Johnston7O, Knuth7l, Knuth73, Lyon75, Matwin76, Mitlbrant74,
ModeI78, Perrott77, RusseII69, Saltzer7O, Satterthwaite72, Sites78, Storey77, Waite73,
Wichmann7O, Wong74, Wortman76, Yuva[75

Performance Evaluation

Bard76, BarcJ79, Beilner77, Booth79, Calingaert67, Camnpbe1168, Conti79, Denning78, Ferraril8,
Kleinrock75b, Robinson79, Smith79b, Storey77, Trivedi79

Data Collection Techniques

Baker77, Basifi75 BasiNi77, Basili7fb, Basili78c, Basili7fa, Basifilfc, Bergeron75, Cheung74,
Cohen74, Ferrari78, Fries78 Saltzer7O, Schneiderman8O, Slavinski75, Walston77,
WiIlmanll

Human Factors

Atwood7g, Basili7Bb, Basili79c, Z;ard78, Card79a, Card79b, Dunsinore8O, Gannon75a,
Gannon75b, Gannon77, Gordcon7ga, Hansen78, Love77, ModeI78, Floberts8O, Sammet7l,
SchneidermanSO, Sheppard79, Weissman73, Weissman74, Woodfield/19

Error Studies

Amory75, Basifi77, Basili7Ba, Basifi7Sb, Basili78, Basili79, Belady76, Dunsmore78,
Dunsmore8O, Fries76, Gannort75a, Gannon75b, Gannon77, Motley77, Musa75, Schafer79,
Schneiderman8O, Thayer76, Weiss79

Measures of Productivity

Chrysler78, Comer7g, Crossman7g, Curtis79, Dunsmore78, Fltzslmmons78, Freberger79,
Jefferyl?, Jones78, Myers78a, Sammet7O, Sheppard7g, Walston77, Woodfield79

4

Software Life Cycle

Basili78c, Basid, Dunsmore80, Gehring7l, Gilb77b, Hoare76, Jeffery".., Lehmans0,
McKissick79, Mills76, Myers78a, Parr8O, Putnarn78, Rye77, Weiss79, Wolverton74

Cost Estimation

Basili77, Basili78a, Basilil9b, Belady76, DACS79, Doty77, Herd77, Jeffery??, Jones78, Parr8O,
Putnain78, Walston77, Wolverton74

Software Monitoring

Ashiby73, Barak78, Basifi75, Basili77, Basili78b, Basili79a, Basili79c, Beizer70, Bergeron75,
Brailsford77, Brinchl-ansen73, Brinch~lansen78, Calingaert67, Cambe1l68, Cerf 70,
Cheng69, Cohen74, Cohen77, Crochovw6g, Crowley79, deFreitas78, Dearnley78, Elshoffl76,
Fitch77, Fong73, Gaines69, Griswold75, Hanson78, Ingalls7l, Johnston70, Knuth7l,
Knuth73, Lyon75, Matwin76, Millbrant74, Model78, Perrofttl, RusselI69, Saltzer70,
Satterthwaite72, Sites78, Storey77, Waitel3, Wichmann70, Wong74, Wortman76, Yuval75

Tran-ifer of Techniques from Other Disciplines

McCabe76, Musa75, Schneidertnan80O

Maintenance and Enhancement

Belady76, Curfis79, Gilb77b, McKissickl9, Walters78

Lainguarje Selection, Evaluation, and Design

Browne70, Dunsmore78, Gannon75a, Gannon75b, Gannon77, Hoare76 Sammet7l, Shaw74,
Shaw80, Weissinan73, Weissmain74

A 3plication-Spacific Measuref

Compile rs: Bloom74, Shaw74, Wulf??

Interactive Systems: Card78, Card79a, Card79b, Mamrack79, Robertse'3

Paging Systems: Arora78, Gupta78, Sprin77

Protection: EIlis78

Roliability: Gi1b77a, Gilb7T, Littlewood75, Mulsa75, Naur78, Schafer79, Thayer76, Walters78

Tosting Techniques: Bicevskis7g, BrinchHansen73, BrinchHansen78, Budd78, Howdcen78a,
Hlowden78, Howden79, Myers78b 1

5

Annotated Bibliography

[Alexander 72] William Gregg Alexander.
How A Programming Language is Used.
Technical Report CSRG-10, University of Toronto, February, 1972.

An empirical study of programs written in XPL was carried Out with the aim of
determining properties of both the language and the object machine, the S/360. The
information gathered by examining a set of typical XPL, to the complier for XPL, and to
the S/360. In addition, a profile generator for XPL programs was developed and
illustrated. A powerful programming tool, it enables an XPL programmer to clearly see
where execution time is spent in his program. [Abstract]

[Amory 75] W. Amory and J. A. Clapp.
Engineering of Quality Software Systems (A Software Error Classification

Methodology).
Technical Report RADC-TR-74-325, Rome Air Develoment Center Technical

Report, January, 1975.
This report presents preliminary results of a study in the area of error classification. A
general method of error classification is described which is designed to serve as a
guideline for experiment-specific application. A survey of error classification and
analysis work, both in the general literature and at MITRE, as well as a study of error
experiment design considerations, are reflected in the discussion and conclusions.
[Abstract)

[Arora 78] Radha Krishan Arora and R. K. Subramanian.
Exploiting the optimal paging algorithms.
Inf. Process. Lett. 7(5).233-236, August, 1978.

From the title of this paper, I expected a discussion of a way to improve existing paging
techniques by applying new insights about optimal paging alqrorithms. What I found
instead was a preseiitation of methods for computing: 1) the number of page faults and
the average memor) demand for a variable space page replalement algorithm which
minimizes the total cost of replacement and retention of pag ?s; and 2) the minimum
number of page faults for a fixed space demand prepaging alctrithm. Although these
paging algorithms are unrealizable (because they require knowledge of future
references), they are often useful as benchmarks for comparisons with realizable

replacement algorittms. The methods for computing these va ues appear to be quite

efficient, requiring only one pass over the reference trace aid one memory cell per
program page. The paper explains the methods clearly, and I wc uld recommend it to any
researcher desiring to compute these performance measures. 1I;R341491

[A hby 73] Gorden Ashby, Loren Salmonson, and Robert Heilman.
Design of an Interactive Debugger for FORTRAN: MANTIS.
Software--Practice and Experience 3:65-74,1973.

A debugger for FORTRAN is described. Actions can be associated with individual

statements. The execution flow can also be traced. Objectives, implementation
experience and system features are discussed and are related to the general problem of
designing debuggers for language subsystems. [RTS)

6

[Atwood 79] Michael E. Atwood, H. Rudy Ramsey, Jean N. Hooper and Daniel A. Kullas.
Annotated Bibliography on Human Factors in Software Development.
AIR Technical Report P-79-1, June, 1979.

As part of a larger Army Research Institute effort to survey, synthesize, and evaluate the
state of the art in the area of human factors as applied to software development, a fairly
extensive literature survey was conducted. This resulting bibliography contains citatins
of 478 articles or reports pertaining to the behavioral aspects of software design,
programming, coding, debugging, testing, evaluation, and maintenance. Most citations
are accompanied by descriptive abstracts, and all are indexed by author, publication
source, institutional affiliation, and subject. To help the user unfamiliar wih the area, the
bibliography contains brief, basic reference lists in the areas of software engineering,
the psychology of software development, the Structured Programming Series, and the
DoD software program. Coverage is exhaustive through 1977 with a few references In
1978. [Abstract)

[Baker 77] W. F. Baker.
Software Data Collection and Analysis: A Real-Time System Project History.
Technical Report RADC-TR-77-192. Rome Air Development Center, June, 1977.

This report discusses the procedures used for, and the results obtained from, an
analysis of software error problem reports. The problem reports studied were generated
during the development of a large, real-time, highly sophisticated multi-processor data
processing system. A brief profile of the development of this system is presented along
with discussions of the procedures used in the analysis of the problem reports and the
objectives to be met. The results of the analysis are discussed, and statistics reflecting
the results are presented. Finally, some of the problems encountered during the course
of the study are presented, as well as some pertinent observations. [Abstract]

[Baker 79] Albert L. Baker and Stuart H.Zweben.
The Use of Software Science in Evaluating Modularity Concepts.
IEEE Transactions on Software Engineering SE-5(2):170-120, March, 1979.

An investigation is made into the extent to which relationships from software science are
useful in analyzing programming methodology principles tRat are concerned with
modularity. Using previously published data from over 500 programs, it is shown that
the software science effort measure provides quantitative answers to questions
concerning the conditions under which modularization is beneficial. Among the issues
discussed are the reduction of similar code sequences by temporary variable and
subprogram definition, and the use of global variables. Ut.ing data flow analysis,
environmental consideration which affect the applicability of alternative modularity
techniques are also discussed.

The results obtained using software science are compared with certain generally
accepted methodologies involving modularity, and show strong agreement. Finally, the
results suggest some areas of potential improvement in the technique used to obtain the
software science measurements. [Abstract]

[Barak 78] Amnon B. Barak and Moshe Aharoni.
A Study of Machine Level Software Profiles.
Software--Practice ano Experience 8:131-136,1978.

The instruction mix of a CDC CYBER/74 computer in a university environment was
monitored, and frequencies of execution for the most commonly used instructions was
determined. The percentages over various time intervals is con irant, so a machine.level
software profile (MLSP) can be computed. [RTS]

7

[Bard 76] Yonathan Bard.
An Experimental Approach to System Tuning.
In Peter P. S. Chen and Mark Franklin, editor, Proceedings of the International

Symposium on Computer Performance Modeling, Measurement and
Evaluation, pages 296-305. Harvard University, March, 1976.
It is desired to find the values of certain system parameters which maximize some
performance criterion. Using standard experimental design techniques, one runs an
initial set of experiments which explore the system's response surface. Subsequently,
the data are smoothed. and a hill climbing technique is used to locate the maximum. This
technique was employed successfully to tune the paramenters in an experimental
version of the VM/370 scheduler.[Abstract

The techniques of measurement described here have the great advantage of neither
pretending to specious accuracy nor consuming the resources they are supposed to
measure during the experimental period. This would seem a method with wide
applicability in tuning systems, and one capable of useful refinement with experience.
(CR34690]

[Bard 79] Yonathan Bard.
Performance Analysis of Interactive Systems.
In Quantitative Software Models, pages 108-124. Data and Analysis Center for

Software, 1979.
Many topics are covered by the science (art??) of system performance analysis. Among
these are measurement of existing systems, tuning, performance evaluation, design ot
control algorithms, system modeling, workload characterization, and performance
prediction. After giving a brief summary of these topics, the paper will concentrate on
the last three. It will describe how existing workloads can be measured and analyzed
routinely so as to produce the inputs required by analytic system models. These models
employ queueing network formulations which allow the workload to consist of several
user classes with different characteristics. Such models have been validated
successfully against real systems, but some problems, particularly relating to paging In
virtual memory systems, have so far not received definitive solutions. (CR34534]

(Barnard 77] David Barnard (ed.).
An Annotated Bibliogra,-,hy on Computer Program Engineering.
Technical Report, Univ;rsity of Toronto, Computer Systems Research Group, May,

1977.
Collects extensive anrotations on individual articles in the field of software engineering
and includes subject :lassification and extensive topic cross-referencing. Many of the
referenced articles arf, relevant to software metrics. [MS]

[Basili 75] V. R. Basili and A. J. Tu,-ner.
Iterative Enhancement: A Practical Technique for Software Development.
IEEE Transactions on Software Engineering SE-1(4), December, 1975.

This paper recommends the "iterative enhancement" technique as a practical means of
using a top-down, stepwise refinement approach to software development. This
technique begins with a simple initial implementation of a properly chosen (skeletal)
subproject which is followed by the gradual enhancement of successive
implementations in order to build the full implementation. The development and
quantitative analysis of a production compiler for the language SIMPL-T is used to
demonstrate that the application of iterative enhancement to software development Is
practical and efficien', encourages the generation of an easily modifiable product, and
facilitates reliability. jVRS]

8

(Basili 77] Victor R. Basili, Marvin V. Zelkowitz, Frank E. McGarry, Robert W. Reiter, Walter
F. Truszkowski and David L. Weiss.
The Software Engineering Laboratory.
Technical Report TR-535, University of Maryland, Computer Science Center,

College Park, Maryland, May, 1977.
The development of techniques to produce cost-effective reliable software first requires
the collection of quantitative and qualitative data on the development process. Towards
this end, the Software Engineering Laboratory has been organized in conjunction with
NASA Goddard Space Flight Center. The purpose of the Software Engineering
Laboratory is to monitor existing software methodologies and develop and measure the
effectiveness of alternate methodologies.

Initially, three aspects of the software development life cycle are to be investigated.
These are: (1) management aspects in estimating team organization, resource
requirements, schedules and reliability factors in the finished software product, (2) error
characteristics and their causes, and (3) program structure and its relation to
well.developed software. [VRB]

[Basili 78a] Victor R. Basili and Marvin V. Zelkowitz.
Anaiyzing Medium-Scale Software Development.
In Proceedings of the Third International Conference on Software

Engineering, IEEE Catalog No. 78CH1317-7C, Atlanta, Georgia, May, 1978.
The collection and analysis of data from programming projects is necessary for the
appropriate evaluation of software engineering methodologies. Towards this end, the
Software Engineering Laboratory was organized between the University of Maryland and
NASA Goddard Space Flight Center. This paper describes the structure of the
Laboratory and provides some data on project evaluation from some of the early projects
that have been monitored. The analysis relates to resource forecasting using a model of
the project life cycle based upon the Rayleigh equation and to error rates applying ideas
ieto. .d by Belady and Lehman. [VRBI

[Basili 78b] Victor R. Basili andrl:k:bert W. Reiter, Jr.
Investigating Software Development Approaches.
Technical Report TR-688, University of Maryland, Departmen! of Computer

Science, August, 1978.
This paper reports on research comparing various approachei, or methodologies, for
software development. The study focuses on the quantitative a alysis of the application
of certain methodologies in an experimental environment, in ord it to further understand
their effects and better demonstrate their advantages in a coistrolled environment. A
series of statistical experiments were conducted comparing I rogramming teams that
used a disciplined methodology (consisting of top.down design, 1rocess design language
usage, structured programming, code reading, and chief progra imer team organization)
with programming teams and individual programmers that employed ad hoc approaches.
Specific details of the experimental setting, the investigative approach (used to plan,
execute, and analyze the experiments), and some of the results of the experiments are
discussed. [VRB]

[Basili 78c] Victor R. Basili, Edward H. Ely and Donovan Young.
Executive Summary of the Second Software Life Cycle Management Workshop.
Proceedings of Secor d Software Life Cycle Management Workshop.
Workshop held at Atlanta, Georgia in August, 1978.

This is the proceedings of a workshop sponsored by the U. S. Army Computer Systems
Command, U. S. Army Institute for Research in Management Information and Computer
Science. It contains a large volume of papers which deal with models, metrics, and
studies in the software life cycle management process. Topics of interest include (1)
description and understanding of various components of the life cycle, (2) ways to
delineate and analyze relationships among component acllvities, (3) milestones and
other tools to help direct, coordinate, understand and control research and development
in software life cycle management, and (4) development of management tools using the

9

results of life cycle management research to help plan and manage software
development projects. (VRB]

[Basili 78d] Victor R. Basili and Marvin V. Zelkowitz.
Analyzing Medium-Scale Software Development.
Proceedings of the Third International Conference on Software

Engineering:1 16.123, May, 1978.
The collection and analysis of data from programming projects is necessary for the
appropriate evaluation of software engineering methodologies. Towards this end, the
Software Engineering Laboratory was organized between the University of Maryland and
NASA Goddard Space Flight Center. This paper describes the structure of the
Laboratory and provides some data on project evaluation from some of the early projects
that have been monitored. The analysis relates to resource forecasting useing a model
of the project life cycle based upon the Rayleigh equation and to error rates applying
ideas developed by Belady and Lehman. [Abstract]

(Basili 79a] Victor R. Basili and Robert W. Reiter, Jr.
Evaluating Automatable Measures of Software Development.
IEEE Workshop on Quantitative Software Models, October, 1979.

There is a need for distinguishing a set of useful automatable measures of the software
development process and product. Measures are considered useful if they are sensitive
to externally observable differences in development environments and their relative
values correspond to some intuition regarding these characteristic differences. Such
measures could provide an objective quantitative foundation for constructing quality
assurance standards and for calibrating mathematical models of software reliability and
resource estimation. This paper presents a set of automatable measures that were
implemented, evaluated in a controlled experiment, and found to satisfy these
usefulness criteria. The measures include computer job steps, program changes,
program size, and cyclomatic complexity. [VRB]

[Basili 79b] Victor R. Basili and Marvin V. Zelkowitz.
Measuring Software Development Characteristics in the Local Environment.
Computers and Structures 10, 1979.

This paper discusses the characterization and analysis facilitiea being performed by the
Software Engineering Laboratory which can be done with minimal efort on many
projects. Some examples are given of the kinds of analyses that can be done to aid in
managing, understanding and characterizing the development of software In a
production environment. [VRB)

(B isili 79c] Victor R. Basili and Robert W. Reiter, Jr.
An Investigation of Huran Factors in Software Development.
Computer Magazine, December, 1979.

This paper gives a human factors interpretation of an experiment on software
development. The experiment involves the development of software under three
different environments which include disciplined teams, ad hoc teams, and ad hocIndividuals. Low level programming aspects are used to predict high level software
properties, such as reliability, cost effectiveness, and complexity. [VRB]

[Beilner 77] H. Beilner and E. Gelenbe.
Measuring, modeling and evaluating computer systems.
Elsevier/North Holland, Inc., New York, 1977.

This book consists of the 26 papers presented at the Third International Symposium on
Modeling and Performance Evaluation of Computer Systems organized in Bonn,
W.Gormany (October 1977) by GM0 and cosponsored by IFIP Working Group 7.3,
IRIA.LABORIA, and the Commission of the European Communities.

Five contributions aim at the evaluation of more or less total computer system
configurations; four papers deal with models of program behavior and of memory
management policies; seven others propose exact or approximate solutions for
probabilistic models of queues and/or of networks of queues. There are two studies of

10

optimal resource assignment under deadlock and cost constraints, respectively. Two
papers discuss the use of timed Petri nets for performance evaluation. The remaining
presentations deal with simulation models (2), measurement tools (1), statistical
sequential methods (1), and reliability assessment of fault-tolerant computing systems
(1).

Most papers are contributions to research; this book is therefore not for the manager in
search of a ready.made method for the evaluation of his computer installation.

The book ends with the keynote address which was delievered by C. A. Petri. This is a
rather controversial and thought-provoking paper in which it is argued that the existence
and impact of computer technology on society "makes a new approach to modeling
necessary and at the same time feasible." While the necessity is evident to many people
working in the field, the feasibility is less so, and the two examples by which Petri
illustrates the new "strict modeling discipline" he proposes are unfortunaely too modest
to be really convincing in this respect. [CR34328]

[Beizer 70] B. Beizer.
Analytical Techniques for the Statistical Evaluation of Program Running Times.
In Proceedings of the Fall Joint Computer Conference, AFIPS Press, 1970.

[Belady 76] L. A. Belady and M. M. Lehman.
A Model of Large Program Development.
IBM Systems Journal(3), 1976.

Discussed are observations made on the development of OS/360 and its subsequent
enhancements and releases. Some modeling approaches to organizing these
observations are also presented. [VRB]

[Belady 79a] L. A. Belady.
Survey of software complexity measures.
Proceedings of the IEEE Workshop on Quantitative Software Models.
Workshop held at Kiamesha Lake, New York, in October, 1979.

The survey is present !d in a two.dimensional classification of about seventy papers on
complexity. Both poogramming related and more general papers are considered.
Following the approach taken by a paper, the survey distinguishes four classes:
informal, based on counting, probabilistic, and experimental. Some examples are
offered. [LAB)

[Belady 79b] L. A. Belady and C. J. Evangelisti.
System Partitioning anc its Measure.
Technical Report RC 7! 60 (# 32643), IBM T. J. Watson Research Center, March,

1979.
Program modules anc! data structures are interconnected by alls and references In
software systems. Partitioning these entities into clusters reducis complexity. For very
large systems manual clustering is impractical. A method to perform automatic
clustering is described and a metric to quantify the complexity of the resulting partition
is developed. [Abstract)

[Bergeron 75] R. Daniel Bergeron and Henri Bulterman.
A Technique for Evaluation of User Systems on an IBM S/370.
Software--Practice and Experience 5:83-92,1975.

The design and implementation of the System for System Development (SSD) Evaluation
System is described. This system modifies load modules of the user's system in order to
cause run.time invocation of the system at routine entry. Raw data on secondary
storage is produced, and a post processor is used to interpret the data. The Information
produced by the post processor includes cummulative and differential times, execution
counts, and a history of the calling sequences. [RTS]

A1

11

[Bicevskis 791 Janis Bicevskis, Juris Borzovs, Uldis Straujums, Andris Zarins, and Edward
F. Miller, Jr.
SMOTL -- A system to Construct Samples for Data Processing Program Debugging.
IEEE Transactions on Software Engineering SE-5(i):60-66, January, 1979.

The possiblity of automatic construction of a complete set of program tests is
considered. A test set system is said to be complete if every feasible program branch
(segment) is executed by it. The complete test set construction algorithm for
commercially oriented data processing programs is outlined, and the results of its
functioning on real programs are analyzed. [Abstract]

[Bloom 74] Burton H. Bloom, Mac H. Clark, Clare G. Feldman, Robert K. Coe.
Criteria for Evaluating the Performance of Compilers.
Technical Report RADC-TR-74-259, Rome Air Development Center, October, 1974.

The main purpose of this study was to develop criteria by which it will be possible to
qualitatively measure and evaluate the performance of compilers, possibly operating on
different computers, and possibly having different features. To satisfy this purpose,
three technical questions were studied:

1. How can two compilers with the same features and operating in the same
environment be compared?

2. If two compilers with the same features operate in different environements.
how can their measur.2d differences in performance be attributed to the
environmental differences vs. the compiler differences?

3. How should a compiler buyer deal with the problem of evaluating compilers
with different special features?

These three questions were studied from a point of view that the answers should help
provide a basis for conducting dollar cost/benefit analysis of compilers. [Abstract)

[Boehm 73] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. McLeod, M. J. Merritt.
Characteristics of Software Quality.
Technical Report TRW-SS-73-09, TRW Software Series Repo 1, December, 1973.
This may have come cut as a Springer or Elsevier book.

The objectives of this study were to identify a set of characteristics of quality software
and, for each characteristic, to define a metric such that:

1. Given an arbitrary program, the metric provides a quantitative measure of
the degree to which the program has the associated chars :teristic.

2. Overall software quality can be defined as some functio i of the values of
the metrics.

[Abstract]

[Btisvert 79] Ronald F. Boisvert, John R. Rice and Elias N. Houstis.
A System for Performance Evaluation of Partial Differential Equations Software.
IEEE Transactions on Software Engineering SE-5(4):418-425, July, 1979.

This paper describes a system to systematically compare the performance of various
methods (software modules) for the numerical solution of partial differential equations.
We discuss the general nature and large size of this performance evaluation problem and
the data one obtains. The system meets certain design objectives that ensure a valid
experiment: 1) precine definition of a particular measurement; 2) uniformity in definition
of variables entering the experiment; and 3) reproducibility of results. The ease of use of
the system makes it possible to make the large sets of measurements necessary to
obtain confidence In the results and its portability allows others to check or extend the
measurements. The system has four parts: 1) semiautomatic generation of problems for
experimental input; 2) the 1lipack system for actually solving the equation; 3) a date
management system to organize and access the experimental data; and 4) data analysis
programs to extract graphical and statistical summaries from the data. (Abstract]

12

[Booth 79] Taylor L. Booth.
Performance Optimization of Software Systems Processing Information Sequences

Modeled by Probabilistic Languages.
IEEE Transactions on Software Engineering SE-5(1):31-44, January, 1979.

The performance of a hardware/software system is a function of both the deterministic
properties of the computation being performed and the probabilistic properties of the
information sequence being processed. This paper develops the idea of a computational
cost which can be used to measure system performance and shows how this cost can be
related to the structure of the system and the information processed by the system.
Different ways in which this cost can be used to study system performance are
presented. [Abstract)

[Brailsford 77] D.F. Brailsford, E. Foxley, K.L. Mander and D.J. Morgan.
Run-Time Profiling of Algol 68-R programs using DIDYMUS and SCAMP.
SIGPIan Notices 12(6):27-35, June, 1977.
Proceedings of the Strathclyde Algol 68 Conference.

Two programs are discussed. The first, DIDYMUS, is run together with the program to be
monitored, and builds a histogram of the program counter at regular intervals. A
postprocessor which has access to the link table then prints the approximate time spent
in each routine. The second program, SCAMP, is a preprocessor which inserts code to
maintain counts of syntactic constructs. Since only a moderate amount of syntactic
analysis is done, there are several restrictions on the allowable constructs. [RTS]

[BrinchHansen 73]
Per Brinch Hansen.
Testing a Multiprogramming System.
Software--Practice and Experience 3:145-150,1973.

A central problem in progrram design is to structure a large program such that it can be
tested systematically by the simplest possible techniques. This paper describes the
method used to test the RC 4000 multiprogramming system. During testing, the system
records all transitions of processes and messages between various queues. The test
mechanism consists of fifty machine instructions centralized in two procedures. By
using this mechanism in a series of carefully selected test cast s, the system was made
virtually free error free within a few weeks. The test procedure is illustrated by
examples. [Abstract]

[B inchHansen 78]
Per Brinch Hansen.
Reproducible Testing of Monitors.
Software--Practice anc Experience 8:721-729, 1978.

This paper describes a systematic method for testing monitor modules which control
process interactions in concurrent *programs. A monitor is tested by executing a
concurrent program in which the processes are synchronized by a clock to make the
sequence of interactions reproducible.LThe method separates the construction and
implementation of test cases and makes the analysis of a concurrent experiment similar
to the analysis of a sequential program. The implementation of a test program is almost
mechanical. The method, which is illust tted by an example, has been successfully used
to test a multicomputer network program written in Concurrent Pascal. [Abstract]

)2

13

[Browne 70] P. H. Browne et al.
Data Processing Technologies, Volume I- High-Level Language Evaluation.
Army Contract No. DAH60-69-C-0037, Teledyne Brown Engineering, Huntsville,

Alabama, May, 1970.
This paper discusses the evaluation criteria used for selecting languages for use in
Ballistic Missile Defense Agency. While most of the paper is devoted to a discussion of
the relevance of the technical characteristics of the languages under consideration, the
report is important for software metrics because it describes a weighted scoring
technique and applies this to a practical situation. (JES)

[Budd 78] Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward, and Richard A. DeMillo.
The Design of a Prototype Mutation System for Programming Testing.
In Proc. 1978 National Computer Conference, pages 623-628. AFIPS, November,

1978.
One of the most neglected areas of software development has been the area of software
testing. There have, however, been many articles written on the inadequacy of the
testing performed on software prior to release.

The authors are correct when they state that the "major question which must always be
addressed is: If a program is correct for a finite number of test cases, can we assume it
is correct in general."

We are presented with a "design of a prototype mutation system for program testing."
This analysis is based upon the assumption that "competent programmers will produce
programs which, if they are not correct, are 'almost' correct. That is, if a program is not
correct it is a 'mutant'--it differs from a correct program by simple errors." Mutation
analysis is designed to detect these errors. The prototype system is approximately 80
percent effective using 25 mutant operators. These operators range from simple to
complex.

If the prodecures discussed are effective on subroutines, the question arises as to
whether they can be as effective on larger, more complete programs. In any case, It Is
gratifying to see that more attention is being paid to testing software prior to release
rather than waiting to correct errors detected by the user. (CR34263)

(Calingaert 67] Peter Calingaert.
System Performance Et aluation: Survey and Appraisal.
Communications of the 4CM 10(1):12-18, 1967.

The state of the art of iystem performance evaluation is reviewed and evaluation goals
and problems are exanined. Throughput, turnaround, and availability are defined as
fundamental measurts of performance; overhead and CPU speed are placed In
perspective. The app'opriateness of instruction mixes, kernelu, simulators and other
tools is discussed, at well as pitfalls which may be encountered when using them.
(Abstract]

[Cambell 68] D.J. Cambell and U.J. Heffner.
Measurement and analysis of large operating systems during system development.
In Proceeding AFIPS Fall Joint Computer Conference, pages 903-914. AFIPS Press,

1968.

(Card 781 Stuart K. Card.
Studies in the Psychology of Computer Text Editing Systems.
Technical Report SSL-78-1, Xerox PARC, August, 1978.

Six studies of user interaction with on-line computer text editing systems are reported.
Editing times for benchmark tasks on several editing systems were collected to gauge
the range of performance across systems. Using the measured times, it was possible to
predict when an editing system would outperform a typewriter. TO model the user's
behavior in greater detail, an information processing model of editing performance Is
proposed describing the user's "goals", "operators", "methods", and "selection
rules". An important issue in such a model is how the model's accuracy depends on the

14

grain of analysis. To find out, the model was recast at nine different levels of grain size
and the accuracy of the different versions compared. From observations of users on
several different systems, it was discovered that on each task, the users go through a
similar sequence of task assimilation, target location, target modification, and
verification. This concept of a "unit task cycle" was used to predict rough performance
times for a proposed system prior to system specification. With respect to the target
location part of a task, four devices for pointing to a target were compared and modeled.
Using Fitts' Law, it is argued that the time for the best of these devices, the mouse,
approaches the theoretical minimum. Finally, a Monte Carlo simulation model using
gamma-distributed, with which sequences of user actions, time per task, and the
distribution of time can be predicted.

The picture of user behavior that emerges from these studies is related to, but distinct
from, behavior in classical problem-solving studies. The main difference is that the
methods are almost certain of success. For any subproblem the user simply recalls the
solution from his experience rather than working it out. Hence there is no search. Such
behavior is expected to be found in many cognitive tasks in industrial work and daily life
which people perform repetitively, tasks the report calls 'routine cognitive skills.'
[Abstract]

[Card 79a] Stuart K. Card, Thomas P. Moran, Allen Newell.
The Keystroke-Level Model for User Performance Time with Interactive Systems.
Technical Report SSL-79-1, Xerox PARC, March, 1979.

It is not common practice today for system designers to deal systematically with the
issues of user-computer performance. One reason is the lack of appropriate analysis
tools. An easy-to-use model -- the Keystroke Model -- is proposed for predicting the time
it will take expert users to execute given tasks on a system. The Model is based on
counting keystrokes and other low-level operations, including the user's mental
preparations and the system's responses. Methods for executing tasks are coded in
terms of these operations, and standard times for the operations are then summed up to
give predictions. Hurisic rules are given for predicting where mental preparations
occur in the methods. Keystroke Model predictions were tested against data from 28
users, on 10 systems, and over 14 task types. The root-mean-square prediction error
was 21% for individual tasks -. and much better for collectiors of tasks. An example
illustrates how the Keystroke Model can be used to give parametric predictions and how
sensitivity analysis can be used to redeem conclusions in the face of uncertain
assumptions. Finally, the Keystroke Model is compared to s veral simpler versions,
which trade ease-of-use for accuracy. (Abstract]

[Card 79b] Stuart K. Card.
A Method for Calculating Performance Times for Users of Intc ractive Computing

Systems.
In Proceedings of the 1979 International Conference on Cybernetics and

Society, pages. Cybernetics, October, 1979.
In order to design systems which are easy and pleasant to use, designers must trade off
several different factors. Yet, at present, there is little scientific basis for how to do this.
This paper presents a way In which one of the factors, time to perform a task, can be
calculated at design time from a simple model. The technique gives estimates accurate
to about 20% of actual times required by users (measured under laboratory conditions)
in a variety of different tasks and systems. Several examples of the use of the model for
interface design and analysis are discussed. (Abstract]

15

[Cerf 701 V.G. Cerf.
Measurement of Recursive Programs.
PhD thesis, School of Engineering and Applied Science, UCLA, 1970.
Report 70-43.

[Chanon 73] Robert N. Chanon.
On a Measure of Program Structure.
Technical Report, Carnegie-Mellon University, 1973.

Program structure has been discussed as being an important influence on the ease with
which programs can be constructed, verified, understood, and changed. Yet the notion
of program structure has remained a vague and imprecisely defined concept. This thesis
proposes a definition and a measure for program structure and evaluates the usefulness
of the measure as a tool for determining and controlling structure in a program.

Applications of the measure require that the assumptions which objects make be
precisely stated. These are defined to include assumptions about the nature and use of
variables and data; conditions relating to the correct execution of the program; and
assumptions about the program enviornment in which the text is executed. Top-down
programming by stepwise refinement forms the basis for a proposed methodology that
permits these assumptions to be stated as a program is constructed.

The measure uses the information theoretic concept of excess entropy -. entropy loading
-- to determine the extent to which assumptions are shared. Entropy loading calculations
also provide a way of comparing different decompositions of a program. Unfortunately,
finding the best decompositions of all but small programs seems intractable.
Consequently, several heuristics are stated that attempt to establish bounds on the
growth of entropy loadings for elaborations of decompositions suggested at early stages
in a development.

Several programs are developed using mechanical aids to record assumptions and
compute entropy loadings. Since each development preservcs assumptions at every
elaboration, this information need not be deduced from program text when the program
is studied or is to be modified. Entropy loading figures at each stage allow different
decompositions to be compared and provide either a basis for cnoosing a decomposition
or grounds for actually modifying the program to achieve tetter structure. These
developments illustrate the proposed methodology and show that the measure produces
results that are usually consistent with the definition of program structure as well as the
informal notion of structure from the literature.

Without mechanical aids, however, applications of these techniques to practical
problems would be tedious and difficult. This and other diff culties motivate further
research about this important but elusive property of prcgrams: their structure.
[Abstract)

[Chen 76] Peter P.S. Chen and M;Jrk Franklin.
Proceedings of the International Symposium on Computer Performance Modeling,

Measurement, and Evaluation.
The International Symposium on Computer Performance Modeling, Measurement, and
Evaluation was held on March 29.31, 1976, at Harvard University. Cambridge,
Massachusetts. This Symposium was jointly sponsored by the SIGMETRICS group of
ACM and IFIP Working Group 7.3 (Computer System Modeling).

The main purpose of the Symposium was to bring together rese. rchers and practitioners
to discuss problems in computer system performance evaluation.

The papers ranged from model building and validation to measurement techniques.
Several areas of current interest such as database systems, computer networks, and
computer systems control were also covered. (CR34397)

16

(Cheng 69] P.S. Cheng.
Trace-driven system modeling.
IBM System Journal(4):280-289, 1969.

The method described in the paper is to run the job stream sequentially using the OS
under which a trace program can be executed. System activities that pertain to the
execution of a given job are collected in a trace log. Then the data in the trace log is
reduced to the level of detail the system is to be simulated at. The events present in the
reduced trace log are used to drive the event-based simulation. (RTSJ

[Cheung 74] R. C. Cheung. K. H. Kim, C. V. Ramamoorthy, and S. S. Reddi.
Automated Generation of Self-Metric Software.
Proc. of the Seventh Hawaii International Conference on System Sciences:149-151,

1974.
Self-metric software are programs that record their behavior statistics automatically
during their execution. They are generated from existing software by inserting software
measurement instruments into the program at appropriate locations after an automatic
analysis by the system. In this paper, an algorithm to locate and insert the optimal
(minimal cost) set of activity counters for generating the program activity profile is given.
The use of the model for measuring execution time, branching characteristics, code
activities, path activities, and other program statistics are discussed. The applications
of these statistics in program testing, optimization, and program restructuring for virtual
memory are presented. [Abstract]

[Chrysler 78] Earl Chrysler.
Some Basic Determinants of Computer Programming Productivity.
Communications of the ACM 21(6):472-483, June, 1978.

The purpose of this research was to examine the relationship between processing
characteristics of programs and experience characteristics of programmers and
program development time. The ultimate objective was to develop a technique for
predicting the amount of time necessary to create a computer program. The fifteen
program characteristics hypothesized as being associated with an increase in
programming time required are objectively measureable from preprogramming
specifications. The fi% o programmer characteristics are experience- related and are also
measurable before a g rogramming task is begun. Nine program characteristics emerged
as major influences)n program development time, each associated with increased
program time. All five programmer characteristics were found to be related to reduced
program developmen time. A multiple regression equation which contained one
programmer characte-istic and four program characteristics gave evidence of good
predictive power for fU recasting program development time. [CR34959]

[Clark 76] Douglas W. Clark.
List Structure: Measurements, Algorithms, and Encodings.
Technical Report, Carnegie-Mellon University, August, 1976.

This thesis is about list structures: how they are used in practice, how they can be
moved and copied efficiently, and how they can be represented by space-saving
encodings. The approach taken to these subjects is mainly empirical. Measurement
results are based on five large programs written In Interlisp. [Abstract)

(Clark 78] Douglas W. Clark and Cordell C. Green.
A Note on Shared List Structure in LISP.
In!. Process. Left. 7(6):312-314, October, 1978.

LISP permits "share' cells", that is cells which are pointed to more then once. This
paper shows that fe%%er than 2 1/2 percent of all cells were shared for five particular
applications. With so few shared cells, various clever garbage collection strategies are
practical, as discussed and referenced in the paper. [CR342601

17

[Clark 79] Douglas W. Clark.
Measurements of Dynamic List Structure Use in Lisp.
IEEE Transactions on Software Engineering SE-5(1):51-59, January, 1979.

This paper is an empirical study of how three large Lisp programs use their list structure
during execution. Most list-cell references are due to the functions car and cdr, which

are executed about equally often and greatly outnumber other primitive functions.

Executions of cdr yield the atom nil about 10 to 20 percent of the time, and nearby list
cells most of the rest of the time. Executions of car yield atoms, small integers, and list
cells in varying proportions in the three programs. Atom references by car tend to

concentrate on a small number of atoms. The function rplacd increases static pointer
locality, but rplaca is used idiosyncratically. Repeated reference to list cells is likely:

over half of all references were to one of the ten most recently referenced cells.
Linearization is the rearrangement of lists so that consecutive cdr's are adjacent in
memory whenever possible. This property deteriorates slowly after a list structure is

linearized. If all of a program's lists are linearized, page faults are reduced slightly, but

because of the high cost of a fault this small reduction has a large effect. (Abstract]

[Cohen 74] J. Cohen and C. Zuckerman.
Two Languages for Estimating Program Efficiency.
Communications of the ACM 17(6):301-308, June, 1974.

Two languages enabling their users to estimate the efficiency of computer programs are

presented. The program whose efficiency one wishes to estimate is written in the first
language, a go-to-less programming language which includes most of the features of

Algol 60. The second language consists of interactive cummands enabling its users to
provide additional information about the program written in the first language and to

output results estimating its efficiency. Processors for the two languages are also

described. The first processor is a syntax-directed translator which compiles a program
into a symbolic formula representing the execution time for that program. The second
processor is a set of procedures for algebraic manipulation which can be called by the

user to operate on the formula produced by the first processor. Examples of the usage of

the two languages are included. The limitations of the present system, its relation to
Knuth's work on the analysis of algorithms, and some of te directions for futher
research are also disrcused. [Abstract]

[Cohen 77] J. Cohen and N. Carpenter.
A Language for Inquiring about the Run-time Behaviour of Pr)grams.
Software--Practice and Experience 7:445-460,1977.

This paper describes a language for studying the behaviour of p~ograms, based upon the
data collected while these programs are executed by a compute .Besides being a useful

tool in debugging, the language is also valuable in the experi nental evaluation of the

complexity of algorithms, in studying the interdependence of cinditionals in a program,
and in determining the feasibility of transporting programs from one machine to another.

The program one wishes to analyze is written in an Algol 60-like language; when the
program is executed it automatically stores, in a data base, the information needed to

answer general questions about computational events which occurred during execution.
This Information consists (basically) of the list of labels passed while the program Is

being executed, and the current values of the variables. Since the list of labels Is
describable by regular expressions, these expressions can also be used to identify

specific subparts of the list and therefore allow access to the values of the variables.
This constitutes the basis for the design of the inquiry language. The user's questions

are automatically aj'swered by a processor which inspects the previously generated

data base. The papur also presents examples of the use of the language and describes
the implementation of its processor. (Abstract]

I

18

[Comer 79] Douglas Comer and Maurice H. Halstead.
A Simple Experiment in Top-Down Design.
IEEE Transactions on Software Engineering SE-5(2):105-109, March, 1979.

In this paper we: 1) discuss the need for quantitatively reproducible experiments In the
study of top-down oesign; 2) propose the design and writing of tutorial papers as a
suitably general and inexpensive vehicle; 3) suggest the software science parameters as
appropriate metrics; 4) report two experiments validating the use of these metrics on
outlines and prose; and 5) demonstrate that the experiments tended toward the same
optimal modularity.

The last point appears to offer a quantitative approach to the estimation of the total
length or volume (and the mental effort required to produce it) f rom an early stage of the
top-down design process. If results of these experiments are validated elsewhere, then
they will provide basic guidelines for the design process. [Abstract]

[Conti 79J Dennis M. Conti.
Findings of the Standard Benchmark Library Study Group.
Technical Report 500-38, National Bureau of Standards Special Publication,

January, 1979.
This report presents the findings of a Government-industry study group investigating the
technical feasibility of standard benchmark programs. As part of its investigation, the
study group reviewed earlier efforts to develop and use standard benchmark programs.
Several issues dealing with the implementation, maintenance, cost/benefit, an,1
acceptability of standard benchmarks emerged as a resulf of this review. The problems
encountered by the study group, notably the lack of an accepted definition of
representativeness, prevented it from-arriving at a definitive statement on feasibility.
However, several areas were identifies as topics requiring further investigation and are
presented in this report. [Abstract]

[Courtois 77] P. J. Courtois.
Decomposability: Queueing and Computer System Applications.
Academic Press, New York, 1977.

Large computing systems, like many complex systems, can be regarded as nearly
completely decomposable systems -. systems in which the density of interactions
between elements is low and the interconnection matrices are sparse. The book
presents techniques for analysis of software and hardware systems that can be modeled
as nearly-decomposable systems. EMS)

The theory of queueing networks, developed by Gordon, Jackson, and Newell in the late
1950s and early 1960s. lay almost unnoticed by computer analysts until, in 1971, Buzen
discovered fast algorithms for calculating queue-length distributions in these networks.
Since then interest in analytic models of computer performance has grown explosively.
The theory has grown too: the models handle a variety of queueing disciplines, load
dependent servers, multiple job classes, and service distributions of phase type.
Computational algorithms have been developed for each of the extensions.

But the technology of queueing networks has reached its limits. The computational
procedures do not handle priorities, blocking, or synchronized servers -- all of which
occur in real computer systems. Moreover, the algorithms become unwieldy for systems
of reasonable size, and they often exhibit numerical instabilities. The exact solution
methods, which use brute force, are being dropped in favor of approximations, which
use cunning.

P.J. Courtois has written a highly original monograph about the most powerful
approximation method of which we know: decomposability. The method overcomes the
difficulties of exact solutions to qucueing problems.

The analysis of systems which are (nearly) decomposable has been attributed to Simon
and Ando who, in 1961, reported on state.aggregation in linear models of economic
systems. The key observation is that the matrices which describe complex systems tend
to be mostly empty. Courtols's insight is that computer systems are hierarchies of
components, within which Interactions are strong and fast compared to interactions

19

between components at the same level. In developing the method of decomposability for
analyzing computer systems, Courtois has also developed computational methods for
any (nearly) decomposable system. (CR34612]

[Crochow 69] J.M. Crochow.
Real-time graphic display of time-sharing system operating characteristics.
In Proceedings AFIPS Fall Joint Computer Conference, pages 374-386. AFIPS

Press, 1969.

[Crossman 79] Trevor D. Crossman.
Taking the Measure of Programmer Productivity.
Datamation:144-147, May, 1979.

[Crowley 79] Charles Crowley and Gary Klimowicz.
A Note on Procedure Timing.
SIG Plan Notices 14(11), November, 1979.

The feasibility of procedure timing is discussed in relation to commonly used computers
and operating systems. Some simple design criteria are described which facilitate such
timing in an OS. Finally some observations are made on how clocks might be available at
the hardware level to futher facilitate procedure timing. [RTS]

[Curtis 79] Bill Curtis, Sylvia B. Sheppard, Phil Millman, M. A. Borst and Tom Love.
Measuring the Psychological Complexity of Software Maintenance Tasks with the

Halstead and McCabe Metrics.
IEEE Transactions on Software Engineering SE-5(2):96-104, March, 1979.

Three software complexity measures (Halstead's E, McCabe's v(G), and the length as
measured by number of statements) were compared to programmer performance on two
software maintenance tasks. In an experiment on understanding, length and v(G)
correlated with the percent of statements correctly recalled. In an experiment on
modification, most significant correlations were obtained with metrics computed on
modified rather thar unmodified code. All three metrics correlated with both the
accuracy of the modification and the time to completion. Relationships in both
experiments occurrec primarily in unstructured rather than structured code, and in code
with no comments. The metrics were also most predictive of performance for less
experienced progran mers. Thus, these metrics appear to assess psychological
complexity primarily where programming practices do not provide assistance in
understanding the cotle. [Abstract]

[Curtis 80] B. Curtis.
Measurement and expirimentation in software engineering.
Special Issue of IEEE Froc., September, 1980.

This paper has two riajor parts. The first is a summary of mtrics based on product
properties useful to predict productivity and schedule. The second is a review of
experimental evaluation of metrics proposed to capture programming attributes, mostly
complexity. Close to one hundred papers are referenced. [LAB]

[DACS 79] Data and Analysis Center for Software.
Quantitative Software Models.
Technical Report, U. S. Air Force, March, 1979.

This report has been prepared by the Data and Analysis Center for Software for the U. S.
Air Force. The volume contains brief description of models and tabular classification of
major contributions iv, the following three areas:

20

Life Cycle Cost/Productivity

Reliability/Error Analysis
Complexity

A fifty.two item bibliography is also attached. [LAB]

The purpose of this document is to disseminate information on the models and methods
that encompass software life-cycle costs and productivity, software reliability and error
analysis, and software complexity, and the data parameters associated with these
models/methods. [Preface]

For each of 44 models, the report provides a summary of the purpose and characteristics
of the model and a list of the model's parameters, outputs, etc. [MSJ

[Dearnley 78 P. Dearnley.
Monitoring database system performance.
The Computer Journal 21(1):15-19, 1978.

Monitoring is categorized into the areas of physical (sampling) and logical (modifying the
source text). Logical monitoring is futher broken down into the areas of cummulative
(includes lower level routines) and differential. The DBMS was instrumented to record
real and processor time on both a cumulative and a differential basis, in addition to
frequency and number of transfers. [RTS]

[deFreitas 78) S. L. de Freitas and P. J. Lavelle.
A Method for the Time Analysis of Programs.
IBM Systems Journal 17(1), 1978.

Discussed is a technique for investigating the efficiency of compiled programs. Based
on research that uses FORTRAN as a test subject, the method is more widely applicable.
Time analyses show programmers points at which efficiencies may be increased. Also
discussed are uses of the technique for comparing the efficiencies of compilers and
languages. and for making performance/cost analyses. Presented are validation data
for the method under several sets of conditions. [Abstract]

[Denning 78) Peter J. Denning.
The Operational Analysis of Queueing Network Models.
Computing Surveys 10(3):225-262, September, 1978.

Both Markovian queueing network theory and operational queLcing network theory lead
to the same mathematical equations. However, the de ivations resulting from
operational analysis are dependent upon one or more of tie following operational
principles: 1) All quantities are defined to be precisely measu 'able; 2) All assumptions
are directly testablu; 3) The system must be flow balanced; ar d 4) The system must be
homogeneous.

These operational assumptions can be tested prior to applying the equations from this
theory. Direct verification of the assumptions will allow anaiysts to more confidently
apply queueing network analysis In their system evaluation endeavors. Hence, the
difference between the Markovian and operational approaches is important.

The paper pr , nfts the results of operational queueing network Iheory and succinctly
motivates its orivation. The concepts which are discussed include job flow balance,
state transition balance, one-step behavior, homogeneity, and decomposition. Analysts
not familiar with these concepts and their application should definitely study this
tutorial. It is well written and highly recommended. [CR34957]

21

[Doty 77] D. L. Doty, P. J. Nelson, and K. R. Stewart.
Software Cost Estimation Study; vol I: Guidelines for Improved Software Cost

Estimating.
Technical Report RADC-TR-77-220, Rome Air Development Center, August, 1977.

This report contains guidelines for developing estimates of computer software cost.
Consideration is first given to the initial program estimate which is often made with a
paucity of supportive data. Adjustments are presented for modifying the estimate given
the availability of additional data. Procedures are presented for assessing the
affordability of the resulting estimates. Emphasis is placed on developing a conservative
but reasonable best estimate for purposes of program budgeting. Separate
consideration is given to steps that should be taken to bring the program in at or below
budget. Frequently recurring problems are summarized in their time-phased order of
occurence. [Abstract]

[Dunsmore 78] H. E. Dunsmore and J. D. Gannon.
Programming Factors--Language Features that Help Explain Programming

Complexity.
Proc. ACM 1978 Annual Conf. 2:554-560, 1978.

Programming complexity (the amount of difficulty in constructing a program) may depend
upon certain programming factors (choices of programming language features). Using
program changes as a programming complexity measure, previous research has
identified five potential programming factors. This paper suggests that subjects tend to

use the same levels of these factors in two different programming languages, supporting
the conjecture that these factors are elements of individual programming style. It also
describes five potential programming factors, and although each of these has intuitive
appeal, only average procedure length was related to programming complexity.
(Abstract]

The paper's abstract summarizes its contents well. This paper is interesting and well
written; however, the reader should exercise caution in reaching conclusions based on
the results presented. [CR34375]

[Dunsmore 80] H. E. Dunsmore and J. D. Gannon.
Analysis of the Effects of Programming Factors on Programm ng Effort.
The Journal of Systems and Software 1, 1980.

Programming effort appears to be related to choices of prograriming language features
which we call prcgramming factors. A series of exper ments was conducted
investigating program construction, comprehension, and tiudification. Ease of
construction seemed related to average nesting depth, perceriage of global variables
used for data communication, average variables referenced, ar d average live variables
per statement. Data communication and live variables were sht wn to be related to ease
of modification as well. [VRB]

[Ellis 78] Clarence A. Ellis.
Analysis of Some Abstract Measures of Protection in Computer Systems.
Internation Journal of Computing and Information Science 7(3):219-251,

September, 1978.
In this paper, Ellis has done a very good, very thorough, rigorous analysis of an

uninteresting academic problem. It is embarrassing that such good work should be
wasted on such an tnrealistic approach to protection. The prnblem posed is based on
protection by keys, imilar to the method used in the IBM 360/370 computer storage
protection system. The accesses of a set of subjects to a set of objects is to be

controlled. A key is associated with each subject and each ol,ject. Access is allowed
only If the key of the subject Is properly related to the key of the object. A proper
relation exists if the number of one-bite, resulting from a Booleun function of the keys of
the subject and the object, exceeds a system threshold. By varying the function
(equivalence, AND, ...) and the threshold, one can achieve various protection schemes.

This is not an unrealistic basis for a protection scheme (IBM actually built one version of

SIt), but Ellis then assumes 1) that objects are associated one-to-one with subjects, and

-

22

that a subject can only access its object; 2) keys are statically assigned; and 3) there are
more subject/object pairs than there are distinct keys. In this situation, protection is
not possible, so Ellis investigates how to minimize the amount of protection failure which
can occur (worst case, average, ...), totally disregarding the fact that no one would ever
build a system which is guaranteed to allow protection violations.

Given also that systems exist with the basic structure proposed, but with dynamic key
assignments, we can only assume that since real systems are too difficult to analyze, a
totally unreal system ws analyzed instead. [CR33988]

[Elshoff 76] James Elshoff.
An Analysis of Some Commercial PL/1 Programs.
Transactions on Software Engineering SE-5(2):113-120, June, 1976.

The source code for 120 production PL/I programs from GM's commercial computing
installations has been analyzed. Programs are considered with respect to five
attributes: program size, program readability, program complexity, programmer
discipline, and language use. IRTSI

The source code for 120 production PL/I programs from several General Motor's
commercial computing installations has been collected. The programs have been
scanned both manually and automatically. Some data from the scanning process are
presented and interpreted.

The programs are considered with respect to five attributes: 1) the size of the programs,
2) the readability of the programs, 3) the complexity of the programs, 4) the discipline
followed by the programmers, and 5) the use of the programming language. Each area is
reviewed with pertinent data presented whenever it is available.

This report should be of interest to anyone involved with programming. The report helps
explicitly identify some areas of programming in which a better job could be done.
Although the programs analyzed are written in PL/I, those persons from installations
using other languages, particularly Cobol, have indicated that tWe information presented
is typical. [VRB]

[Ferrari 78] Domenico Ferrari.
Performance of Computer Installations: Evaluation and Management.
In Domenico Ferrari, editor, Proceedings of the International Conference on the

Performance of Computer Installations, pages 351. Elsevier/North-Holland,
Inc., New York, June, 1978.
All computer installations are confronted with a variety of performance problems. When
a new installation is to be set up, or an existing one is to be upgiaded, such performance
issues as the analysis of performance requirements for the system to be procured, the
design of benchmarka or synthetic jobs to model the installation's projected workload,
and the sizing of the system present themselves naturally to the parties involved. When
the system is insta led, it must be tuned to the actual workload, otherwise its
performance would generally be lower than the one its capacity could produce. Since a
system's performance is very sensitive to workload variations, and since the workload In
most Installations changes in time with many different patterns and frequencies,
periodic retuning is often necessary or desirable. The procurement of systems software
and applications software, that of external computing services, and various issues
regarding machine room organization are some of the additional problems that are to be
faced by scientific, administrative and commercial installations in their daily operation.
To be successfully solved, these problems require that system performance be
evaluated and managed. Evaluation methodoligies, techniques and tools provide the
knowledge on which performance managers are to base their decisions.

What is the state of the art In the areas of performance evaluation and performance
management in 1978? Has significant progress been made toward the solution of such
classical problems as workload characterization, benchmark design, capacity
planning?? Is the field of performance evaluation ready to accept the challenges coming
from new, rapidly emerging hardware and software techniques (distributed systems,
database systems, multilevel automatically managed storage hierarchies, and so on)??

23

The International Conference on the Performance of Computer Installations (ICPCI 78),
of which this volume contains the proceedings, was organized to provide an answer to
these questions. [CR343451

[Fitch 77] John Fitch.
Profiling a Large Program.
Software--Practice and Experience 7:511-518, 1977.

A profiling technique (provided by the BCPL compiler) was used on a large algebra
system, CAMAL, in order to determine where time was being used. Savings of up to 70
per cent as a result of small changes were reported. [RTS]

[Fitsos 79] George P. Fitsos.
Software Science Counting Rules and Tuning Methodology.
Technical Report TR 03.075, IBM, September, 1979.

Programming Development at IBM's Santa Teresa Laboratory has been investigating
"The Elements of Software Science" as defined by Dr. Maurice H. Halstead. A set of IMS
and VSAM modules have been counted and were used to tune and specifically define the
counting rules for assembler and PL/S. The method used for tuning the rules is
presented, as are the rules themselves. Also discussed are some observations made
during the tuning process. While the specific experiments were limited to assembler and
PL/5 languages, the methodology for tuning of rules would seem applicable to any
language. [Abstract)

[Fitsos 80] George P. Fitsos.
Vocabulary Effects in Software Science.
Technical Report TR-3926, IBM, January, 1980.

Programming Development at IBM's Santa Teresa Laboratory has been investigating the
elements of software science as defined by Dr. Maurice H. Halstead of Purdue
University. In conducting our experiments certain phenomena were observed, two of
which are the subject of this report. The first relates to the number of unique operators.
The number appears to be constant for a given higher level language. The second relates
to program length. W *ile the specific experiments were limited to assembler and PL/S
languages, the obser,'ations would seem applicable to other programming languages.
[Abstract]

[Fitzsimmons 78] Ann Fitzsimmons and T 3m Love.
A Review and Evaluatio i of Software Science.
Computing Reviews 10(1):3-18, March, 1978.

During recent years, there have been many attempts to define and measure the
"complexity" of a co nputer program. Maurice Halstead has developed a theory that
gives objective measures of software complexity. Various studies and experiments have
shown that the theors's predictions of the number of bugs in programs and of the time
requried to implement a program are amazingly accurate. It is a I romising theory worthy
of much more probing scientific investigation.

This paper reviews the theory, called "software science", and the evidence supporting
it. A brief description of a related theory, called softwepe physics, is included.
(Abstract]

[Foxley 78] E. Foxley and D.J. Morgan.
Monitoring the Run-Time Activity of Algol 68-R Programs.
Software--Practice and Experience 8:29-34,1978.

A program profiling a istem for the Algol 68-R language is described. The system Is a
preprocessor using the language syntax analyzer. The profile consists of counts
associated with each statement (some constructs were not monitored due to the lack of
sophistication of the parser). (RTS]

24

[Freburger 79] Karl Freburger and Victor R. Basili.
The Software Engineering Laboratory: Relationship Equations.
Technical Report TR.764, University of Maryland, Computer Science Center,

College Park, Maryland, May, 1979.
Despite the fact that software costs are becoming a greater portion of the cost of using a
computer system, very little research has been done to determine which factors impact
the software development process, Presented are results of research into methods of
estimating pl.oJ.ramming project variables such as effort, project duration, staff size and
productivity. The results obtained are compared to the results of a previous study by
Walston and Felix. [VRB]

[Fries 76] M. J. Fries.
Software Error Data Acquistion.
Technical Report RADC-TR-77-130, Rome Air Development Center, November,

1976.
Software error data was collected from a large DOD system development project. The
errors were analyzed and put into a predefined set of categories. As part of the effort,
the times to find and fix the errors were calculated, and the phase of the development
project in which the errors arose was determined. Study results were also compared to
results of a similar type of study performed by a second contractor who performed
analysis of data from another DOD software project. [Abstract]

[Gaines 69] R. Gaines.
The Debugging of Computer Programs.
PhD thesis, Princeton University, 1969.

[Gannon 75a) J. D. Gannon and J. J. Horning.
Language Design for Programming Reliability.
IEEE Transactions on Software Engineering 1(2), June, 1975.

[Gannon 75b] John D. Gannon and James J. Horning.
The Impact of Language Design on the Production of ReliablE Software.
Proceedings of International Conference on Reliable Softwar -:10-22, 1975.

Gannon has performed a major experiment to measure the effect of nine specific
language design decisions in one context. Analysis of the freqtency and persistence of
errors shows that several decisions had a significant impact on r Viability. [Abstract]

[Gannon 77] J. D. Gannon.
An Experimental Evaluation of Data Type Conventions.
Communications of the ACM 20(8), August, 1977.

This paper discusses an experiment that compares the pr gramming reliability of
subjects using a statically typed language and a "typeless' language. Two languages
were designed by the author and attempts were made to make the two languages
identical in all features not affected by the issue of data types. This particular
experiment showed that in that particular environment, the features of a statically typed
language increased programming reliability more than the features of a "typeless*
language. IJES]

25

[Gehring 77] Philip F. Gehring, Jr. and Udo W. Pooch.
A Quantitative Analysis of the Accuracy of Estimating in Software Development.
In Proc. 16th Annual Technical Symposium on Systems Software: Operational

Reliability and Performance Assurance, pages 61-70. National Bureau of
Standards, Gaithersburg Md., 1977.
The authors hypothesize that there are specific activities within a software development
project whose estimate accuracy consistently reflects the estimate accuracy of the
project as a whole. That is, if the resource consuption of Ihese key activities is predicted
accurately, then the resource consuption of the whole project will also be predicted
accurately. Similarly, if a bad estimating job is done on the key activities, the estimate
for the whole project will also be bad.

The authors tested this hypothesis by applying a statistical technique known as SEQUIN
(for sequential item analysis) to data on some 39 software projects collected by the
PARMIS project control system of the US Air Force Data System Design Center in
Montgomery, Alabama. SEQUIN has previously been used to identify key questions in
the Scholastic Achievement Test (SAT), such that scores on the key quesions are
strongly correlated to overall score. Such information is of use to educators in reducing
the length of the SAT (not to mention its value to the students who take it).

The authors found that there are indeed specific key activities in the sense described
above. The three activities leading the list are : 1) defining input data, 2) system design
review, and 3) flowcharling of system processes.

The benefits of this knowledge are not made clear. The implication is that if effort were
concentrated on producing an accurate estimate of, say, the resources to do input data
definition, then overall project estimate accuracy could be significantly improved. But
there is nothing in the remainder of the paper to suggest how the accuracy of key
activities are in fact"key". It is a bit like knowing what links will cause a chain to fail,
but being unable to do anything about those links.

The authors conclude that "estimation of software development continues to be as bad
as, or worse than, it has ever been." They recommend a number of remedial measures,
chief of which is replacing the classical phase structure o software development
(feasibility, requirements, system design, etc.) by the
Research.Development-Production model, in which each of the three phases is
estimated on the basis of the preceding phase. "The RDP model will heighten
management's awareness of the complexity of what has to be done to eliminate the
historically impossible requirement to accurately estimate the cost and time for the
entire software development project. [CR34785]"

[G 3pner 78] Herbert L. Gepner.
User Ratings of Software Packages.
Datamation 24(13):163.227, December, 1978.

Users of proprietar) software packages rated 260 packages subjectively in the
categories Overall Satifaction, Throughput and Efficiency, Ease of Installation, Ease of
Use, Documentation, Vendor Technical Support, and Training. Average opinion, rice, and
brief notes on advantages and disadvantages are given for each. This article Is
abstracted from a DOatapro 70 report. [MS)

[Gilb 77a] T. Gilb.
Software Metrics Technology: Some Unconventional Approaches to Reliable

Software.
In Software Reliability, pages 101-115. Infotech International Ltd., 1977.

A brief survey of techniques classified under the umbrella of "software metrics," I.e.,
they all rate to measurability of software reliability and closely related concepts, is
presented. The subjects are classified into four categories, although most techniques
could be said to belong to more than one:

1. Quantification of reliability

2. Automation of the reliability/maintalinability task. This includes, for

26

example, assertion language tools, automatic program structuring, and
automatic test case construction.

3. Management technology for reliable software. This includes, for example,
design and code inspection, and the multi-element component comparison
and analysis method.

4. Redundancy based reliability technology. This includes, for example, dual
programming; advocated as the cheapest way to achieve reliability

The paper might be useful for project managers, although it is extremely superficial and
fairly ad hoc. The author also seems to have a somewhat strange understanding of the
notion "structured programming". [CR33990]

[Glib 77b] T. Glib.
Distinct Software: A Redundancy Technology for Reliable Software.
In Software reliability, pages 117-133. Infotech International Ltd., Maidenhed,

Berkshire, UK, 1977.
Distinctness is used to mean that there is some degree of redundancy in the software.

Some advantages of creating software distinctness for the software development
process are described. 100% distinctness, i.e., there is for each program at least one
other program which functionally performs identically, is argued to have great
advantages during operational testing for automatic correction of bugs, maintenance,
and adds far less to the total costs of the software than generally believed. Some
advantages of data redundancy are also mentioned.

Finally, a number of mostly very favorable experiences with the application of distinct
software are described.

The paper makes a reasonably good case for software distinctness as a means of
achieving high reliability. The examples and experiences described are interesting and
illustrative. (CR33968)

[Gilb 77c] Tom Gilb.
Software Metrics.
Winthrop, 1977.

Glib attempts to present a coherent overview of metric techniques and some practical
applications.

[Goel 78] Amrit L. Goel and K. Okimoto.
Bayesian Software Predction Models.
Technical Report RADC -TR-78-155, Rome Air Development Center, July, 1978.
Five volumes.

These reports explore the use of a stochastic model for softwert failure phenomena for
the case when the errors are not corrected with certainty. [MS]

[Gordon 79a] Ronald D. Gordon.
Measuring Improvements in Program Clarity.
IEEE Transactions on Software Engineering SE-5(2):79-90, March, 1979.

The sharply rising cost incurred during the production of qualiti software has brought
with it the need for the development of new techniques of software measurement. In
particular, the ability to objectively assess the clarity of a program is essential in order
to rationally develop useful engineering.guidelines for efficient software production end
language development.

A functional relation between the clarity of a program and the number and frequency of
operators and operands which occur In the program is presented. This measure of
program clarity provides an estimate of the amount of mental effort required to
understand the program, assuming that the reader is fluent in the programming language
employed.

This measure Is tested by applying It to several published examples which demonstrate)

27

improvements in program clarity. The objective assessment which is provided using this
measure is found to agree with the experimental data gathered. [Abstract)

[Gordon 79b] Ronald D. Gordon.
A Qualitative Justification for a Measure of Program Clarity.
IEEE Transactions on Software Engineering SE-5(2):121-128, March, 1979.

Several measures of program clarity have been proposed which attempt to assess the
clarity of a program as a function of easily measured properties of the code. Such
measures include the number of variables or statements, or the density of go to's.

The measure of program clarity, developed in the field of software science, equates the
amount of mental effort required to understand a program with the ration of program
volume to implementation level. To be effective, a measure such as this should reflect
the improvement in clarity which occurs when program transformations which make
software easier to understand are applied.

The removal of each of six impurity classes from poorly written programs is studied. For
a wide class of programs, purification reduces the amount of effort required for
comprehension as predicted by the measure. [Abstract)

[Griswold 75] Ralph Griswold.
A Portable Diagnostic Facility for SNOBOL4.
Software--Practice and Experience 5:93-104,1975.

In programming systems based on abstract machine modeling concepts, the underlying
structure of the abstract machine can be made available to the software implemented on
it. The result is an unusual facility for diagnosis and exploration of software structure.
Such a facility has been added to the macro implementation of SNOBOL4. This paper
describes the nature of the facility, illustrates its use, and presents some results of
using it for language implementation and development. [Abstract]

(Gupta 78] Ram K. Gupta and Mark A. Franklin.
Working Set and Page Fault Frequency Paging Algorithms: a Performance

Comparison.
IEEE Transactions on Computers 27(8):706-712, August, 1971.

The authors analyze the performance of the two paging algroithris mentioned in the title.
Both analytic and empirical results are presented. The former are based on a program
behavior model whirh assumes an inter-page-fault interval dis ribution which depends
only on the size of the program's resident set. The empirical results are based on traces
of two real programs. Performance comparison is based on the value of the space-time
product, with time difined as the sum of virtual and page transf.-r times. Unfortunately,
the value of the latter quantity is not given. The authors conclu e that the PFF algorithm
is more sensitive to the value of its control parameter than is th, WS algorithm, and they
therefore express preference for the latter. Their diagrams, hawever, show PFF to b
derly superior on one of the real program and, with proper tuning, capable of beating WS
on two of the three analytic cases; thus the superiority of WS is far from proven, at least
by the results of this paper. (CR34395]

(Halstead r7] Maurice H. Halstead.
Operating and Programming Systems. Volume : Elements of Software Science.
Elsevier Computer Science Library, 1977.

This book contains the first systematic summarization of a branch of experimental and
theoretical science ialing with the human preparation of computer yograms and other
types of written material. Application of the classical methodi of he natural sciencis
demonstrates that even such relatively Intangible objects aa/Written abstracts and
computer programs are governed by natural laws, both in thes preparation and in their
ultimate form. [VRS),

//

28

[Hansen 78] Wilfred J. Hansen, Richard Doring, and Lawrence R. Whitlock.
Why an Examination was Slower Online than On Paper.
Int. J. Man-Mach. Stud. 10(5):507-520, September, 1978.

The authors looked at the use of a program which carries out interactive examinations on

the PLATO system. They found that the length of time students took to complete
interactive examinations were sometimes as much as twice the length of time taken to
complete similar examinations given conventionally on paper. The authors sought to
explain their finding by analyzing the two examination situations, including the collection
of a limited amount of videotape evidence of students being examined. On the basis of
this analysis, the authors propose suggestions, e.g., for faster display speeds which
"may eventually" make PLATO a faster examination medium than paper. [CR34479J

[Hanson 78] David Hanson.
Event Associations in SNOBOL4 for Program Debugging.
Software--Practice and Experience 8:115-129, 1978.

An event association facility for the SNOBOL4 programming language is described. This
facility permits the execution of a programmer-defined function to be associated with
the occurrence of a specified event. The set of valid events includes variable
referencing, statement execution, program interruption, function call and return, and
execution-time errors. The use and implementation of this facility is described. (RTSI

[Herd 77] James H. Herd, John N. Postak, William E. Russell, and Kenneth R. Stewart.
Software Cost Estimation Study; vol h. Study Results.
Technical Report RADC-TR-77-220, Rome Air Development Center, June, 1977.

The study identified factors that have an adverse effect on software cost estimates,
determined their impact on software cost estimates, discussed methods for controlling
the effect of these factors, and developed an overall methodology for estimating the
costs of software development. In addition to a generalized model for estimating

software development costs, separate models have been generated for estimating the
development cost of command and control, scientific, utility, and business software.
(Abstract)

[H)are 76] C. A. R. Hoare.
The High Cost of Programming Languages.
In Software Systems Engineering, pages 413-429. Online Conferences Ltd.,

Uxbridge, UK, 1976.
This paper investigates the high cost of computer programming, including direct, indirect

and consequential costs. It identifies eight major headings: organization, design,
program construction, error, change, running costs, software procurement, and finally,
delay. It then lists sixteen ways in which a programming language and its
implementation can contribute to these costs, namely, by unfamiliarity,
application-orientatioi, Instability, independent compilation, debugging and optimizing
compilers, machine Cependence, obscurity of specification, freedom of expression,
unreadability, inefficient translation, Inefficient object code, unreliability, insecurity,
lack of structure, illogicality, and complexity. The paper concludes with some advice of
Immediate and long-term benefit to programmers and their managers. [Abstract)

Since the paper is short in respect to the long list of topics, the discussion touches only
the surfact of the problem of high cost of programming languages. But It Is a good
introduction and overview. (CR34245)

C) i

29

[Howden 78a] William E. Howden.
Theoretical and Empirical Studies of Program Testing.
Proc. 3rd International Conference Software Engineering 20(4), April, 1978.

This paper starts off by distinguishing between the theoretical and empirical approaches
to the study of program testing. Various theoretical (nonmathematical,
graph-theoretical, and algebraic) and empirical approaches (path, branch, structured,
special values, and symbolic testing, interlace consistency, anomaly analysis, and
specifications requirements) are described.

Next, the results of a research project are reported. A total of 28 errors were introduced
into six working programs. Various test techniques were then used in attempts to
identify these errors. Path testing was the most effective single technique. It found 18
of the errors. All techniques combined found 26 of the errors.

Two of the six programs were written in ALGOL. The others were written in COBOL,
PL/I, FORTRAN, and PL360. Very little information is presented on the nature or size of
these programs or on the nature of the errors introduced.

The author concludes that further empirical studies of testing are needed. This reviewer
agrees. Considering the magnitude of the resources devoted to program testing, any
guidance in the selection of the most effective test techniqios for a given program
(considering its nature, size, and source language) would be extremely valuable.
[CR34958]

[Howden 78b] William E. Howden.
Functiona! Program Testing.
Technical Report DM-146-IR, University of Victoria, August, 1978.

An approach to functional testing is described in which the design of a program is viewed
as an integrated collection of functions. The selection of test data depends on the
functions used in the design and on the value spaces over which the funcitons are
defined. The basic ideas in the method were developed during the study of a collection
of scientific programs containing errors. The method was l.ie most reliable testing
technique for discovering the errors. It was found to be signift, antly more reliable than
structured testing. The two techniques are compared and their relative advantages and
limitations are discussed. [Abstract]

[Howden 79] William E. Howden.
An Analysis of Software Validation Techniques for Scientific P rograms.
Technical Report DM-171-1R, University of Victoria, March, 1.f,79.

Different empirical methods for assessing the effectivenest of software validation
methods are discus:lcd. Error analysis involves the examiratinn of a collection of
programs whose errcrs are known in advance. Each error is anilyzed and the validation
techniques are ident tied whose use would result in the discovery of the error. The
results of an error a valysis sludy of a package of Fortrnn s -ientific subroutines are
described. The erro s that were present in version five of th.? package and then later
corrected in version .ix were analyzed. The results of the study indicate that the use of
an integrated collection of static and dynamic analysis methoes would have resulted in
the discovery of the errors in edition five before its release. 1he paper is organized so
that it describes the features of an intcgrated approach to , alidation as well as the
effectiveness of individual methods. [Abstract]

[P uang 79J J. C. Huang.
Detection of Data Flow Anomaly Through Progrm Instrumentation.
IEEE Transactions on Software Engineering SE-5(3):226-236 May, 1979.

A data flow anomaly in a progtom is an indication that a progrimming error might have
boon committed. This paper describes a method for detecting such an anomaly by
moans of program instrumenfion. The method is conceptually simple, easy to use, easy
to implement on a computer, and can be applied In conlunction with a conventional
program test to achieve increased errordetection capability. (Abstract]

30

[Ingalls 71] Daniel Ingalls.
Fete: A Fortran Execution Time Estimator.
Technical Report, Stanford University, February, 1971.

This report describes a preprocessor which takes a Fortran program and inserts code to
accumulate counts for each statement. A postprocessor is also described which takes
the modified program and correlates the text with the final counter values. Although
counts rather than times are stored, the postprocessor tries to estimate the cost of each
statement as a function of the operators which compose that statement. [RTS]

[Jackson 78] Richard H.F. Jackson and John M. Mulvey.
A Critical Review of Comparisons of Mathematical Programming Algorithms and

Software.
J. Res. N.B.S. 83(6):563-585, Nov.-Dec., 1978.

This paper surveys fifty articles spanning the period 1953-77 which report the
computational testing of mathematical programming algorithms. The authors' intention
is to document the methods employed in conducting these experiments, including the
selection of problems, algorithm description, experiment design, and the form of
reported results.

The survey is arranged according to the following topics: elements of the experiment
(algorithms, software, problem class); experiment design (test problems, computer
environments, experiment controls); empirical results (performance measures,
statistical methods, mathematical checks, reporting of empirical evidence,
interpretation of results); and suggestions for future work.

The papers included for critical review cover the major areas of mathematical
programming: LP, IP, unconstrained optimization, shortest paths, NLP, networks
(mincost flow), geometric problems, system of nonlinear equations, quadratic programs,
and knapsack problems.

It may be useful to g-ve some examples from the survey which the reviewer finds quite
typical of many papers reporting computational experiments with mathematical
software.

" Insufficient description of the algorithms.

" Lack of attention to the software elements: portability, a ailability, ease of
use, and tolerance setting.

" Lack of information related to the methods of generating t st problems.

" Preprocessing of problems (scaling, data sorting, etc.) not Indicated In
many papers.

" Computer environment and experiment controls (e.g., coinputer, compiler,
operating system) not always described insufficient deta'l. In fact, several
papers do not name the computer used.

e Different measures of performance used by researchers: CPU time,
iterations, function evaluations, etc. Storage requirements not always
defined.

a Limited use of statistical methods to analyze computational experiments.

* Lack of concise statements indicating the purpose of the computational
experiment an1 the limitations of the study.

The authors of thd paper suggest that fundamental research in the area of
computer-algorithm performance is lorig overdue. Some initia' attempts to rectify the
situation In this area have been made. One of the authors of the reviewed paper has
co-authored a report addressing the issue under discussion. [CR34894)

j

31

[Jeffery ??] 0. R. Jeffery and M. J. Lawrence.
An Inter-Organizational Comparison of Programming Productivity.
Technical Report, University of New South Wales, Department of Information

Systems, Wl.
The factors which influence program size and program development time have been
investigated across three dissimilar organizations. Data on a total of 93 COBOL
programs has been collected and analyzed. Eighteen variables covering the
characteristics of the program, programmer and programming environment were
recorded. Program size and program development time were found to have a strong
program characteristic and organization dependency. Programmer characteristics did
not appear to play a role in influencing program size or program development time. The
best determinant of program development time was found to be procedure division lines
of code, which gave a simple regression R in excess of .79 for the two organizations
using well formulated programming standards. Productivity measures based on lines of
code per hour are shown to be misleading in inter-organizational comparisons. [VRB]

[Johnston 70] T.Y. Johnston and R.H. Johnston.
Program Performance Measurement.
SLAC User Note 33, Revision 1, Stanford Linear Accelerator Center, 1970.
Stanford, CA.

[Jones 78] T. C. Jones.
MEasuring Programming Quality and Productivity.
IBM Systems Journal 17(1), 1978.

Discussed is the unit.of.measure situation in programming. An analysis of common units
of measure for assessing program quality and programmer productivity reveals that
some standard measures are intrinsically paradoxical. Lines of code per
programmer-month and cost per defect are in this category. Presented here are
attempts to go beyond such paradoxical units as there. Also discussed is the usefulness
of separating quality measurements into measures of defect removal efficiency and
defect prevention, and the usefulness of separating product;vity measurements into
work units and cost units. (Abstract]

[Keinrock 75a] L. Kleinrock.
Queuing Systems, Volume 1: Theory.
John Wiley & Sons, 1975.

[K!einrock 75b] L. Kleinrock.
Queuing Systems, Volume /I: Applications.
John Wiley & Sons, 1975.

[Knuth 71] Donald Knuth.
An Empirical Study of FORTRAN Programs.
Software--Practice and Experience 1:105-133,1971.

Static and dynamic statistics on a sample of programs were gathered. The principle
conclusion is the importance of a program profile, which is a table of frequency counts
which rocord how often each statement is performed in a typical run. It appears that the
nth most important statement of a program from the point of execution time accounts for
about (a - 1)at-n of the running time, for some a and for small n (very approximately).
Generally less than 4 per cent of a program accounts for mort, than half of its running
time. (RTS]

A sample of Fortran programs was analyzed to discover what programmers "really" do.
Analysis techniques included static counts of syntactic constructs, dynamic counts of
actural executions, and detailed examination of inner loops. Statistical results and some
of their apparent implications are presented. fMS)

*1

32

[Knuth 73] Donald Knuth and Francis Stevenson.
Optimal Measurement Points for Program Frequency Counts.
BIT 13:313-322,1973.

A procedure recently devised by A. Nahapetian reduces an arbitrary flowchart to the
minimal one, on which program frequencies can be measured. Tne algorithm is optimal,
in that the minimum number of measurements is determined. An example
implementation in Simula is given. [RTS]

[Laemmel 78] A. Laemmel and M. Shooman.
Software Modeling Studies.
Technical Report RADC-TR-78-4, Rome Air Development Center, April, 1978.

This report discusses the application of concepts of statistical language theory (Zipf's
Laws) to the derivation of formulas for measuring program and language complexity.
Experimental data from several different programs and programming languages, such as
PL/I, assembly and FORTRAN, is presented which is used to verify the necessary
underlying assumption and to verify formulas for program length by comparison with
actural statistics. Finally, the derived formulas are compared with those of Software
Physics derived by Halstead. [Abstract]

[Lehman 80] M. M. Lehman.
Programs, programming and the software life cycle.
Special Issue of IEEE Proc., September, 1980.

This paper clarifies the difference between the evolution dynamics of program
development and the dynamics of program execution. Also, a classification of large
programs is offered, following the difficulty and severity of continuous enhancement and
maintenance. Extensive bibliography attached. [LAB]

[Littlewood 75] B. Littlewood.
A Reliability Model for Markov Structured Software.
Proceedings of International Conference on Reliable Software:204-207, 1975.

A system is considerel in which switching takes place between sub-systems according
to a continuous param.-ter Markov chain. Failures may occur in Poisson processes in the
sub-systems, and in the transitions between sub-systems. All failure processes are
independent. The ovrrall failure process is described exactly and asymptotically for
highly reliable sub-sy;tems. An application to process-control computer software is
suggested. [A bst ract]

[Love 77] Tom Love.
An Experimental Investi jation of the Effect of Program Structure on Program

Understanding.
Proc. ACM Conference)n Language Design for Reliable Software:105-113, March,

1977.
A within-subjects experimental design was used to test the effect of two variables on
program understanding. The independent variables were complexity of control flow and
paragraphing of the source code. Understanding was measured by having the subjects
memorize the code for a fixed time and reconstruct the code verbatim. Also, some
subjects were asked to describe the function of the program after completing their
reconstruction. The two groups of subjects for the experiment were students from an
introductory programming class and from a graduate class in programming languages.

The major findings were that paragraphing of the source had no effect for either group of
subjects but that prolrams with simplified control flow were easier for the computer
science students to understand as measured by their ability to reconstruct the
programs. The dependent varible, rated accuracy of their description of the programs
functions, did not differ as a function of either independent variable.

The paper is concluded with a description of the utility of this experimental approach
relative to improving the reliability of software and a discussion of the importance of
these findings. [CR344981

33

[Lyness 79] J. N. Lyness.
A Benchmark Experiment for Minimization Algorithms.
Math. Comput. 33(145):249-264, January, 1979.

Among the gound rules for the empirical evaluation of an algorithm one should list a) the
need for a statistical approach which is not unduly influenced by an occasional lucky or
unlucky break, b) the need for a parametric set of test problems so that the algorithm can
be tested under all conditions, easy through impossible, c) the need for condensing a
large volume of test results into a small number of figures which characterize the
properties of the algroithm.

In test minimization programs the author's proposal for b) is a multiparameter family of
"Helical Valley Objective Functions". He accommodates a) and c) by producing a
probability distribution funciton for costs. This has the merit that occasional failures
can be seen in proper perspective, without going to the extreme of either ignoring or
treating them as fatal flaws. He demonstrates the test sequence on several standard
programs. [CR34822J

[Lyon 75] Gordon Lyon and Rona Stillman.
Simple Transforms for Instrumenting FORTRAN Decks.
Software--Practice and Experience 5:347-358,1975.

A preprocessor is described which divides the source into code segments and adds calls
to a monitoring routine which accumulates counts at the segment (statement) level. A
division of monitoring is also given: clock interrupts via the operating system, counters
inserted into a program, calls to a system clock, and event driven hardwar,' pouoes.
[RTSJ

[Mamrak 79] Sandra A. Mamrak and Paul D. Amer.
A Methodology for the Selection of Interactive Computer Services.
Technical Report 500-44, National Bureau of Standards Special Publication,

January, 1979.
This publication addresses the comparison and selection of remote access interactive
computer services. The comparison methodology presented relies principally on the
statistical analysis of measurement data obtained from the interaction between a
computer service anl a user. One of the most important propert.esof the methodology is
that it incorporate confidence statements about the probability ,f having made a correct
selection. Experimental data are presented to illustrate an application of the
methodology, and serve as a basis for a discussion of the cosi and appropriateness of
using the methodology in various procurement efforts. [Abstrac.I

[Matwin 76] S. Matwin and M. Missala.
A Simple, Machine Independent Tool for Obtaining Rough Me asures of Pascal

Programs.
SIGPlan Notices 11(8):42-45, August, 1976.

This paper describes a profiling system written in standard Pascal which consists of a
preprocessor and a postprocessor. The preprocessor inserts statements into the source
of the program to be monitored. As the program runs, it outputs an event record each
time a routine starts or returns. A postprocessor uses this event file to determine
execution counts and times for the routines in the program. [RTS]

(McCabe 76] Thomas J. McCabe.
A Complexity Measure,.
IEEE Transactions on Software Engineering SE-2(4), December, 1976.

This paper describes a graph.theoretic complexity measure and illustrates how it can be
used to manage and control program complexity. The pape, first explains how the
graph.theory concepts apply and gives an intuitive explanation of the graph concepts in
programming terms. The control graphs of several actual Fortran programs are then
presented to Illustrate the correlation between intuitive complexity and the
graph.theoretic complexity. Several properties of the graph-theoretic complexity are
then proved which show, for example, that complexity is independent of physical size

iA

7 AD- AQAT81 412 YALE UNIV -NEW HAVEN CT
DEPT OF COMPUTER

SCIENCE
FIS 9/2

GRAFT SOFTWARE METRICS PANELS FINAL REPORT. PAPERS PRESENTED AT--ETCIU)
JUN 80 A) PERLIS, F 6 SAYWARO, M SHAW N000 ?4-9-C-0672

UNCLASSIFIED RR-182/60

4 EEEE4EEEND IIIII
9i. .

1111 1111-2 1111122

I~ll~1..
IIIJIL15 111116

MICR (W-OY R[SO(LUTION U[ST CARI

NAIIONA[BURAIALT Of ANL)ARL, lllfT A

34

(adding or subtracting functional statements leaves complexity unchanged) and
complexity depends only on the decision structure of a program.

The issue of using nonstructured control flow is also discussed. A characterization of
nonstructured control graphs is given and a method of measuring the "st ructuredness"
of a program is developed. The relationship between structure and reducibility Is
illustrated with several examples.

The last section of this paper deals with a testing methodology used in conjunction with
the complexity measure; a testing strategy is defined that dictates that a program can
either admit of a certain minimal testing level or the program can be structurally
reduced. (VRB]

[McKissick 79] John McKissick, Jr. and Robert A. Price.
Software Quality Assurance.
Proceedings 1979 Annual Reliability and Maintainability Symposium, 1979.

The continuing need for improved computer software demands improved software
development techniques such as the Software Development Notebook. The organization,
content, use and audit of Software Development Notebooks are documented in this
paper. Experience and results from the application of this technique are also presented.
(Abstract)

[Millbrant 74] W.W. Millbrant and J. Rodriguez-Rosell.
An interactive software engineering tool for memory management and user

program evaluation.
in Proceeding AFIPS NCCE, AFIPS Press, 1974.

[Mills 76] Harlan D. Mills.
Software Development.
IEEE Transactions on Software Engineering SE-2(4), December, 1976.

Software development has emerged as a critical bottleneck in the human use of
automatic data processing. Beginning with ad hoc heuristic methods of design and
Implementation of software systems, problems of software systems, problems of
software maintenance and changes have become unexpectedly large. It is contended
that improvement is possible only with more rigor in software design and development
methodology. Rigorous software design should survive its implementation and be the
basis for further evolution. Software development should be done incrementally, In
stages with continuous user participation and replanning, and with design-to.coet
programming within each stage. [VRB]

[h/ odel 78] M. Model.
Monitoring System Behavior in a Complex Computational Environment.
PhD thesis, Stanford U-iversity, January, 1978.
Stan-CS-79-701.

This work is directed at the development of appropriate monitoring tools for complex
systems, In particular, the representation systems of Artificial Intelligence research.
The first half of this work provides the foundation of the design approach put forth and
demonstrated in the second. Certain facts concerning limitations on human information
processing abilities which formed the background for much of the research are
Introduced. Observation of program behavior ('monitoring') is shown to be the main
function of most debugging tools and techniques.

The second half presents an approach to the design of monitoring facilities for complex
systems. A new concept called 'mete-monitoring' replaces traditional dumps and traces
with selective reporting of high-level information about computations. The importance of
the visually-oriented analogical presentation of high-level information and the need to
take Into account differences between static and active processes are stressed. A
generalized method for generating descriptions of system activity is developed. Some
specific display based monitoring tools and techniques which were implemented for this
work are exibited. [Abstract]

SI)

354

[Mohanty 79] Siba N. Mohanty.
Models and Measurements for Quality Assessment of Software.
Computing Surveys 11(3), September, 1979.

Several software quality assessment methods which span the software life cycle are
discussed. The quality of a system design can be estimated by measuring the system
entropy function or the system work function. The quality improvement due to
reconfiguration can be determined by calculating system entropy loading measures.
Software science and Zipi's law are shown to be useful for estimating program length
and Implementation time. Deterministic and statistical methods are presented for
predicting the number of errors. Testing theory is useful in planning the program test
process; as discussed in this paper, it includes measurement of program structural
characteristics to determine test effectiveness and test planning. Statistical models for
estimating software reliability are also discussed. [VRB

[Motley 77] R. W. Motley and W. D. Brooks.
Statistical Prediction of Programming Errors.
Technical Report RADC-TR-77-175, Rome Air Development Center, May, 1977.

This report presents and discusses the results obtained for statistical predictions of
programming errors using multiple linear regression analysis. Programming errors were
predicted from linear combinations of program characteristics and programmer
variables. Each of the program characteristic variables were considered to be measures
of the program's complexity and structure. Two distinct data samples comprising 783
programs with approximately 297,000 source instructions written for command and
control software applications were analyzed. Background data on both samples Is
provided which includes discussions related to each sample's software development
environment, testing conditions, predictor variables, definition of programming errors,
and general data characteristics. Results are presented which give the prediction
equations obtained and a discussion of the predictability of errors and error rate in each
sample. Conclusions of the study and recommendations for further research are also
provided. (A bstract)

[Musa 75] John D. Musa.
A Theory of Software Rtliability and Its Application.
IEEE Transactions on S)ttware Engineering SE-1 (3), September, 1975.

An approach to a theo-y of software reliability based on execution time is derived. This
approach provides a n odel that Is simple, intuitively appealing, and immediately useful.
The theory permits th t estimation, in advance of a project, of the amount of testing In
terms of execution tim v required to achieve a specified reliability goal (stated as a mean
time to failure (MTTF)) Execution time can then be related to calendar time, permitting a
schedule to be develo,,ed. The reliability model that has been developed can be used in
making system tradeo fs involving software or software and harc ware components. The
model has been appl ad to four medium-sized software development projects, all of
which have completed their life cycles. (VRBJ

[Myers 78a] Ware Myers.
A Statistical Approach to Scheduling Software Development.
Computer 11(12):23-38, December, 1978.

This paper Is mostly a summary of Putnam's work In resource estimation on large-scale
software developments. In fact, a more appropriate title would have been "The
Putnam/Norden Statistical Approach to Scheduling Software Development" since It Is
essentially about Putnam's extensions to Norden's original work at IBM in the early
19606.

It Is assumed that there is a natural cost curve governing software development. This
curve Is stated to be a Rayleigh curve, y a ZKof exp(.af'2), where y is the expenditure
on a project per year, f Is the elasped time In years, K is the total project Cost (including
maintenance), and a Is a shape parameter of the curve. With data obtained from the US
Army Computer Systems Command, Putnam has shown that real projects agree with Iwe
curve quite closely.

38

If Id is defined to be the development time (or the time until the Rayleigh curve reaches a
maximum), then the Rayleigh curve can be rewritten as a differential equation of the form
Y x (K/IN 2)t exp(-f *2/f21d0 02)]. (Note: The paper contains a typographical error at
this point.) The term K/SdO62 is defined to be the difficulty of a project, and again
empirical data seems to agree with this assumption.

Comparing these equations with the gradient of a function, the effects of modifying time
(I) or cost (y) on the difficulty can be measured, and a potential practical measure
results. For example, if a project is required in 10 percenl less time with the same staff,
the increase in difficulty can be measured. Or if 10 percent less time is needed, how
much larger a staff is needed to keep the same level of difficulty. The paper points out
that there are limits to how much of a tradeoff can be made for time and people-.the two
are not totally interchangeable.

This paper is a well written summary of Putnam's work. Unfortunately, it suffers from
the same deficiency as much of his other work--a lack of clear explanation of the
underlying theory. To the uninitiated or skeptical the basic Rayleigh curve assumption
looks quite ad hoc; it is, however, based upon a formal theory. The curve derives from
hardware reliability theory, and is based upon the following assumptions:

1. A project has a fixed number of problems to solve.

2. Each problem requires so much time to be solved.

3. Solving a problem leads to fewer remaining unsolved problems (e.g., fixing
a bug fdoes not introduce a new bug).

4. Increasing the number of people leads to an increased rate of problem
solving.

The Rayleigh curve is a natural consequence of these assumptions. While the
assumptions may not be totally accurate, they are a good beginning to an explicit
mathematical theory of cost estimation. ' Unfortunately, it took this reviewer several
months to track down any clearly written reference to this development. A good
theoretical basis is needed to increase acceptance of the empirical data, and I hope that
more will be written about the underlying theory. (The same comments apply to the
other phases of the t'aeory as well.)

While the formalism may not be totally correct, this paper is qui'e important. This is one
of the few areas of research that is trying to get a firm grip on software costs and
estimates. Software is just too expensive and unreliability is too dangerous for such
current estimates as "about 10 lines of code a day" to be satis actory in estimating the
costs of multi-million dollar projects. [CR34649)

[Myers 78b) Glenford J. Myers.
A Controlled Experiment in Program Testing and Code

Walk-Throughs/Inspections.
Communications of the ACM 21 (9):760-768, September, 1978.

This very carefully detailed paper concerns the testing of a PL/1 program patterned after
the by now famous text reformatter program by P. Naur. Although the abstract states
that seven methods were used to test the program, there were only three essentially
different methods used; the test results of the application of these three were combined
(ox post facto) in four additional ways. The three methods used are: 1) computer-based
testing with specifications, but with the listing; 2) computer-based testing with both
listing and specifisations; 3) noncomputer-based testing by a team of three
programmers using the walkthrough/inspection method on t"e listing. Groups were
formed for each of the three methods and balanced as much as possible with respect to
testing experience, knowledge of PL/l, and experience with walk-through procedures.
[CR34125)

0

37

[Naur 781 P. Naur.
Software Reliability,
In R. K. D. Rees, Software Reliability. Infotech International Ltd., Maidenhead,

Berkshire, UK, 1978.
This excellent paper gives a very good clarification of the concept of software reliability.
The author argues, with convincing examples, that reliability can only be understood as
a relation between a certain system behavior and certain human expectations. In other
words, we cannot judge the reliability of a system be observing its behavior. We have to
compare this behavior with some expected standard of behavior. Reliability cannot be
reduced to a single dimension, therefore any attempt to measure it along a one

dimensional scale is misleading.

The author also briefiy discusses reliability and correctness, reliability as related to
systems controlled by software, stability of software systems, and reliable software
design policies. [CR33969)

(Parr 80] F. N. Parr.
An Alternative to the Rayleigh Curve Model for Software Development Effort.
IEEE Transactions on Software Engineering SE-6(3), May, 1980.

A new model of the software development process is presented and used to derive the
form of the resource consumption curve of a project over its life cycle. The function
obtained differs in detail from the Rayleigh curve previously used in fitting actual project
data. The main advantage of the new model is that it relates the rate of progress which
can be achieved in developing software to the ftructure of the system being developed.
This leads to a more testable theory, and it also becomes possible to predict how the use
of structured programming methods- may alter patterns of life cycle resource
consumption. IVRB)

[Perrott 77] R.H. Perrott and A.K. Raja.
Ouasiparallel Tracing.
Software--Practice and Experience 7:483-492, 1977.

A description of different methods of program tracing in a quasiparallel environment, as
well as a specific automatic tracing facility, is given. This facility traces process
activation, entrance, exit, waiting, signaling, resuming, and restarting of monitor
processes. Space and time overhead is examined. IRTS)

[Poitnam 78] Lawrence H. Putnam.
A General Empirical Solution to the Macro Software Sizing and Estimating Problem.
IEEE Transactions on Software Engineering SE-4(4), July, 19;'8.

Application software development has been an area of organizational effort that has not
been amenable to the normal managerial and cost controls. Instances of actual costs of
several times the intial budgeted cost, and a lime to initial operational capability
sometimes twice as lo ig as planned are more often the case than not.

A macromethodology to support management needs has now been developed that will
produce accurate estimates of manpower, costs, and times to reach critical milestones
of software projects. There are four parameters in the basic system and these ore in
terms managers are comfortable working with .- effort, development time, elapsed time,
an4 a state-of technology parameter.

The system provides managers sufficient information to assess the financial dk and
Investment value of a new software development project beftere It is undertaken and
provides techniques to update estimates from the actual data stream once the project is
underway. Using the technique developed in the paper, adequate analysis for decisions
can be made in an hour or two using only a few quick reference tables and a sclentific
pocket calculator. IVRS]

-

V
36

[OSM 79]
Workshop on Quantitative Software Models for Reliability, Complexity, and Cost:

An Assessment of the State of the Art.
Workshop held at Concord Hotel, Kiamesha Lake, New York, In October, 1979,

IEEE Catalog No. TH0067-9.
This is the proceedings of a workshop on quantitative software models for reliability,
complexity and cost, and contains a large number of papers related to both models and
metrics of software development. Included are the evaluation of many models by various
organizations. (VRSJB

[Roberts 80] Teresa Lynn Roberts.
Evaluation of Computer Text Editors.

PhD thesis, Stanford University, 1980.

[Robinson 79] John T. Robinson.
Some Analysis Techniques for Asynchronous Multiprocessor Algorithms.
IEEE Transactions on Software Engineering SE-5(1):24-31, January, 1979.

Efficient algorithms for asynchronous multiprocessor systems must achieve a balance
between low process communication and high adaptability to variations in speed.
Algorithms that employ problem decomposition may be classified as static (in which
decomposition takes place before execution) and dynamic (in which decomposition takes
place during execution). Static and dynamic algorithms are particularly suited for low
process communication and high adaptability, respectively. For static algorithms the
following analysis techniques are presented: finding the probability distribution of
execution time, deriving bounds on mean execution time using order statistics, finding
asymptotic mean speedup, and using approximations. For dynamic algorithms the
technique of modeling using a queueing system is presented. For each technique, and
example application to parallel sorting is given. [Abstract]

IRubey 75] R. J. Rubey.
Quantitative Aspects of Software Validation.
Proceedings of International Conference on Reliable Software:246.251, 1975.

This paper discusses the need for quantitative descriptions of software errors and
methods for gatherinG such data. The software development cycle is reviewed and the
frequency of the errori that are detected during software development and independent
validation are comport d. Data obtained from validation efforts are presented, indicating
the number of errors i 10 categories and three severity levels; the Inferences that can
be drawn from this da a are discussed. Data describing the effectiveness of validation
tools and techniques is a function of time are presented and discussed. The software
validation cost is con rasted with the software development cost. The applications Of
better quantitative software error data are summarized. [Abstraect

[Russell 69] E.C. Russell, Jr.
Automatic Program Analysis.

PhD thesis, UCLA, 1969.
Report 69-12.

[Ryder 79] Barbara G. Ryder.
Constructing a Call Graph of a Program.
IEEE Transactions on Software Engineering SE-5(3):216-226, May, 1979.

The proliferation of large software systems written in high level programming languages
insures the utility of a.alysis programs which examine interprocedural comminications.
Often these analysis programs need to reduce the dynamic relations between
procedures to a static data representation. This paper presents one such
representation, a directed, acyclic graph named the call graph of a program. We
delineate the programs representable by an acyclic call graph and present an aolloehm
for constructing it using the property that its nodes may be lineary ordered. We prove
the correctness of the algorithm and discuss the results obtained from an

(9".- ' 1 1+l Ii

implementation of the algorithm In the PFORT Verifier. (Abstract]

[Rye 77] P. Rye, F. Bamberger, W. Ostanek, N. Brodeur, and J. Goode.
Software Systems Development: A CSDL Project History.
Technical Report RADC.TR-77.213, Rome Air Development Center, June, 1977.

This report provides a description of the data delivered to RADC for Inclusion in a
Software Data Repository. The data consists of a complete history of software
modifications to the APOLLO on-board flight software for the period 1967 through 1971.
Background material on the project that was the source of the data is provided, as well
as tabular and graphic summaries of the data. Some recommendations for future work
are made. [Abstract)

[Saltzer 701 Jerome Satzer and John Gintell.
The Instrumentation of MULTICS.
Communications of the ACM 13(8):495-500, August, 1970.

An array of measuring tools devised to aid in the implementation of a prototype computer
utility Is discussed. These tools include 1) a hardware calendar clock (52 bit, 1
microsecond resolution) and an associated match register; 2) a memory reference
counter; 3) an input/output channel which can be used by an attached processor to read
memory; 4) a general metering package which records time spent executing selectable
supervisor modules while the system is running; 5) a segment utilization metering facility
which periodically probes for the current segment number; 6) a facility which records on
a per-segment basis the number of missing pages and segments encountered during
execution in that segment; 7) a tool which counts the number of times procedures are
called; 8) a software package implemented on a PDP-8 which utilizes the special I1/0
channel (3); 9) the CLI, which prints out the time of day, the CPU time, and the number of
times the process had to wait for a page to be brought in after every 'ready message'; 10)
a ring buffer containing the segment, page number, and time of day of the last 256
missing pages of the process under measurement; 11) a package to monitor the effect of
the system's multiprogramming effort of an individual program; 12) a script driver
implemented on a POP-S; and 13) an internal script driver. (RTS]

[Sammet 70] Jean E. Sammet.
Perspective on Methods of Improving Software Development.
Software Engineering 1, 1970.

The concept of improving software development is important kut ambiguous. The two
major difficulties lie In attempting to measure the various a:4pects and the need to
recognize the vast amount of trodeoffs required. By using a forsiula which permits (and
requires) the mana|er to assign weights to the various facets, some quanlitative
Information can be obtained on various tradeoffs. The productivity of an individual is
important, but is only one facet of the entire development cycl P. A number of specific
technical and management techniques for improving software development have been
described. [Summary]

[Sammet 71] J. E. Sammet.
Problems in, and a Pragmatic Approach to Programming Language Measurement.
In Proceedings AFIPS Fall Joint Computer Conference, pages 243-251. AFIPS,

1971.
This appears to be the first published paper to discuss measurements in programming
languages (as contrasted with measurements in or of programs). The paper describes
the problem and its importance. Part of the paper discusses the need for consideration
of non-technical (as well as technical) issues in selecting a programming language. A
weighted scoring technique is described and Illustrated with no example. A second
part of the paper discusses the problem of defining the terms "ialect" and
"lnguage.L-like" and presents a method for measuring numerically the amount of
deviation of one language from another. [JES]

.1 40

[Satterthwaite 72] E. Satterthwalte.
Debugging Tools for High Level Languages.
Software--Practice and Experience 2:197-217, 1972.

The design of an integrated programming and debugging system using the language Algol
W is described. The debugginf tools are based entirely upon the source language but
can be efficiently implemented. The most novel such tool is a selective trace,
automatically controlled by execution frequency counts. System performance
information is included. [Abstract)

[Schafer 79] R. E. Schafer, J. E. Angus, J. F. Alter, and S. E. Emoto.
Validation of Software Reliability Models.
Technical Report RADC-TR-79-147, Rome Air Development Center, June, 1979.

This report presents the results of a study and investigation of software reliability
models. In particular, the purpose was to investigate the statistical properties of
selected software reliability models, including the statistical properties of the parameter
estimates, and to investigate the goodness of fit of the models to actual software error
data. The results indicate that the models fit poorly, generally due to in most part the
vagaries of the data rather than shortcomings of the models. [Abstract)

[Schneiderman 80]
B. Schneiderman.
Software Psychology: Human Factors in Computer and Information Systems.
Winthrop, Cambridge, Massachusetts, 1980.

This is a very new book which discusses a number of issues which are relevant to
software metrics. A large number of experiments which have been conducted by many
people over a period of time are described. A chapter discusses the software metrics
which have been developed by various people. While the book contains several chapters
which are not related to metrics, it nevertheless appears to be the most complete single
source of material on the numerous approaches to software wretrics and experiments.
[AES)

[Ssvcik 741 Kenneth C. Sevck.
Computer System Modelling and Analysis: Assessing Some Common Assumptions.
Proc. Seventh Hawaii International Conference on System Sciences:37-39, 1974.

Certain assumptions have been made frequently in studying analytical models of
computer systems. Before applying conclusions derived from such models, the validity
of the assumptions must be judged. Any assumption of questionable validity must be
further investigated to determine extent to which its variation coneffect the conclusions
drawn from the model. Here, we investigate assumptions about various quantities of
significance in several types of computer system models. Some suggestions for
incresng the rolovance of future modelling studies are given. [Abstract]

[Shaw 74] Mary Shaw.
Reduction of Compilation Costs Through Language Contraction.
Communications of the ACM 16(5):245-250, May, 1974.

Simpler languages tend to have simpler compilers than more complex languages, but
programs in simpler languages may have to be lerger to accomplish the same tasks. This
paper uses a combination of measurement and simulation techniques to establish the
nature of the tradeoff between program sie and language size. [MS

41

[Shaw 79] Mary Shaw.
A Formal System for Specifying and Verifying Program Performance.
Technical Report CMU-CS-79-129, Carnegie-Mellon University, June, 1979.

Formal techniques for specifying performance properties of programs (e.g., execution
time) and for verifying the correctness of these specifications are developed. These
techniques are extensions of well.known predicate transformer techniques for
specifying purely functional properties of programs. [Abstractl

[Shaw 80] Mary Shaw, Guy T. Almes, Joseph M. Newcomer, Brian K. Reid, and Win. A. Wulf.
A Comparison of Programming Languages for Software Engineering.
Software .- Practice and Experience, 1980.

Four programming languages (Fortran, Cobol, Jovial and the proposed DOD standard) are
compared In the light of modern ideas of good software engineering practice.The
comparison begins by identifying a core for each language that captures the essential
properties of the language and the intent of the language designers. These core
languages then serve as a basis for the discussion of the language philosophies and the
impact of the language on gross program organization and on the use of individual
statements. (Abstract]

[Sheppard 79] Sylvia B. Sheppard, Phil Milliman and Bill Curtis.
Factors Affecting Programmer Performance in a Debugging Task.
General Electric Software Management Research TR-79-388100-5, February, 1979.

This report is the third In a series investigating characteristics of software which are
related to its psychological complexity. Three independent variables, length of program,
complexity of control flow, and type of error, were evaluated for three different Fortran
prbgrams in a debugging task. Fifty.four experienced programmers were asked to locate
a single bug in each of three programs. Documentation consisted of input files, correct
output, and erroneous output. Performance was measured by the time to locate and
successfully correct the bug.

Small but significant differences In time to locate the bug were related to differences
among programs and presentation order. Although there was no main effect for type of
bug, there was a large program by error interaction suggesting the existence of context
effects. Among meas res of software complexity, Halstead's I proved to be the best
predictorof performance followed by McCabe's vlG) and the number of lines of code.

Number of programm ng languages known and familiarity with certain programming
concepts also predicted performance. As in the previous experiments, experiential
factors were better 3redictors for those participants with three or fewer years
experience programmi %g in Fortran. (Abstract)

(Sites 783 Richard Sites.
Programming Tools: St; tement Counts and Procedure Timings.
SIGPlan Notices 13(12):98-101, December, 1978.

Itls argued that execution time statement counts and procedure timings are needed In
even the first Implementation of a high level language. Counts ore useful In debugging,
algorithm analysis and reliability (for example, which statements have never been
executed in testing runs). It is important that the procedure times reflect real time,
rather than CPU time, since I/0 overhead may present problems which can totally
swamp any possible improvements In the CPU.bound part of the code, An example of the
usefulness of these techniques is illustrated in the CRAY.I Pascal compiler. 'It would
perhaps be instructive to direct such programmers to take a routine low on the lit of
percentage of total time, and re-write It to be ten times slower, but 20% smallhr and
100% lg..jl' (RTSJ

(9

42

[Slavinski 75] Richard T. Slavinski.
Static Fortran Analyzer.
Technical Report RADC.TR-75-275, Rome Air Development Center, November,

1975.
The National Bureau of Standards (NOS) Static FORTRAN Analyzer (SFA), which samples
FORTRAN programs and collects statistics on the utilization of predetermined FORTRAN
syntactic constructs, was adapted to operate under the FORTRAN-Y compiler of RADC's
HIS-635 GCOS operating system. The conversion process and subsequent analysis of
258 sample programs, consisting of approximately 22,000 lines of source code, are
provided. The statistical results of this effort may directly support the activities of
FORTRAN language study and standardization efforts which address language and
compiler design, optimization, and subsetting. [Abstract)

[Smith 79a] Charles P. Smith.
Practical Applications of Software Science.
Technical Report TR 03.067, IBM, June, 1979.

Programming Development at IBM's Santa Teresa Laboratory has been investigating the
elements of software science as defined by Maurice H. Halstead. A set of modules have
been counted from a large IBM data base program product and the resulting analysis is
presented in this report. Program length, vocabulary, volume, difficulty and language
level are also discussed as Is the possobility of defect prediction in existing code. This
paper also discusses some of our problems and concerns. [Abstract]

[Smith 79b] Connie Smith and J. C. Browne.
Modeling Software Systems for Performance Predictions.
Technical Report, The University of Texas at Austin, May, 1979.

[Smith 80] Charles P. Smith.
A Software Science Analysis of IBM Programming Products.
Technical Report TR-3925, IBM, January, 1980.

Programming Development at IBM's Santa Teresa Laboratory hes been investigating the
elements of software science as defined by Maurice H.Halstead. This report
summarizes the findings after several large products have ben counted. Program
length, vocabulary, volume, difficulty, and langu e level are discussed. [Abstract]

[Spirn 77] Jeffrey R. Spir.
Program Behavior: Models and Measurements.
Elsevier Scientific Put fishing Company, 1977.

[Storey 77] Tony Storey and Stephen Todd.
Performance Analysis of Large Systems.
Software..Practice and Experience 7:323-369, 1977.

A hybrid analytic and experimental approach to the analysis of large systems Is
described. The approach is iterative under the assumption that a correct analysis will
not be made the first time. The process Is 1) make an analysis of the system in terms of
basic components; 2) create an estimation model; 3) calculate the cost of the
components; 4) create a quantitative estimation model; 5) verity the model
experimentally; 6) if verificatin fails, reiterate; 7) analyze the potential modifications to
make an estimation model of the modified system; and 8) evaluate the modifications.
[RTS)

43

[Svobodova 76] Liba Svobodova.
Computer Performance Measurement and Evaluation Methods: Analysis and

Applications.
Elsevier Scientific Publishing Company, 1976.

[Thayer 76] T. A. Thayer, et al.
Software Reliability Study.
Technical Report RADC-TR-76-238, Rome Air Development Center, August, 1976.

A study of software errors is presented. Techniques for categorizing errors according to
type, identifying their source, and detecting them are discussed. Various techniques
used in analyzing empirical error data collected from four large software systems are
discussed and results of analysis are presented. Use of results to indicate
improvements in the error prevention and detection processes through use of tools and
techniques is also discussed. [Abstract]

[Trivedi 79] Kishor S. Trivedi and Robert A. Wagner.
A Decision Model for Closed Queuing Networks.
IEEE Transactions on Software Engineering SE-5(4):328332, July, 1979.

This paper considers a computer configuration design problem. The computer system is
modeled by a closed queuing network. The system throughput is the objective function
to be maximized and the speed of the devices are the decision variables. A rich class of
nonlinear cost functions is considered. It is shown that any local optimum of the
optimization problem is also a global optimum. It is also shown that the cost constraint is
active and that the method of Lagrange multipliers can be used to solve the problem
efficiently. (Abstract)

[Tuggle 78] Francis D. Tuggle.
Theory Content and Explanatory Power for Simulation Models.
Behav. Sci. 23(4):271-290, July, 1978.

A concise methodology for the efficient modeling of behavioral phenomena in living
systems at the levels of organisms, groups, organizations, societies, and supranational
systems is proposed. The methodology helps resolve questions such as: When a model
is to be made more complex? What variables are useful ones to add? When should the
model development process cease? The methodology is founded upon 1) the precise
identification and delineation of the set of behavioral phenomena to be explained, and 2)
the "size" of alternative explanatory models. From these data, measures of explanatory
power (relative amount of the phenomena explained) and explanatory yield (the average
amount of explained per unit of theory content) may be derived. Explanatory power is
shown to be an increasing function of theory content, and explanatory yield is shown to
be a decreasing function of theory content. The methodology is illustrated in detail in the
context of six successive simulation models of the cognitive behaviors of a subject
solving a job shop scheduling task. The success of the final model in providing a
complete description of one large class of the subject's behavior corroborates the
usefulness of the methodology. (Abstract)

The above abstract is presented with the published manuscript. Little more need be
said; the abstract is quite complete. For Individuals interested in modeling behavioral
phenomena, or perhaps having an interest in general systems, the paper may be of
interest. [CR34456)

[Van der Knijff 78] D. J. J. Van der Knijff.
Software Physics and Program Analysis.
Australian Computer Journal 10(3):82-86, August, 1978.

Software physics is a term used to describe the analysis of programs to extract software
engineering measures from particular general properties of the programs. It may be
used to compare programs and languages, and to improve estimation procedures in the
software industry. This paper introduces the reader to the terms used in software
physics and its application to some problems. A selection of recent empirical analyses
are presented to enable the reader to make comparisons with other methods.

44

(CR339921

[Waite 73] W.M. Waite.
A Sampling Monitor for Applications Programs.
Software--Practice and Experience 3:75-79, 1973.

A set of monitoring conventions are specified for sampling. It the operating system does
not allow interrupt handling by the user, it is necessary to put some of the routines in the
monitor. A set of interface conventions for such a facility is described. [RTS)

[Walston 77] C. E. Walston and C. P. Felix.
A Method of Programming Measurement and Estimation.
IBM Systems Journal 16(1), 1977.

Improvements in programming technology have paralled improvements in computing
system architecture and materials. Along with increasing knowledge of the system and
program development processes, there has been some notable research into
programming project productivity estimation. Also presented are preliminary results of
research into methods of measuring and estimating programming project productivity
estimation. Also presented are preliminary results of research into methods of
measuring and estimating programming project duration, staff size, and computer cost.
[VRB]

(Waters 78] Gene F. Walters and James A. McCall.
The Development of Metrics for Software Reliability and Maintainability.

In Proceedings of the 1978 Reliability and Maintainability Symposium, 1978.

[Waters 79] Richard C. Waters.

A Method for Analyzing Loop Programs.

IEEE Transactions on Software Engineering SE-5(3):237-247, May, 1979.
This paper presents a method for automatically analyzing loops, and discusses why it is
a useful way to look at loops. The method is based on the idea that there are four basic
ways in which the logical structure of a loop is built up. An experiment is presented
which shows that this; accounts for the structure of a large class of loops. The paper
discusses howthe method can be used to automatically analyze the structure of a loop,
and how the resulting analysis can be used to guide a proof of correctness for the loop.
An automatic syslem is described which performs this type of analysis. The paper
discusses the relatio-iship between the structure building methods presented and
designed to assist a p ;rson who is writing a program. The intent is that the system will
cooperate with a progoammer throughout all phases of work on a program and be able to
communicate with the programmer about it. (Abstract]

[Weiss 79] David M. Weiss.
Evaluating Software Development by Error Analysis: The Date from the

Architecture Research Facility.
The Journal of Systems and Software(1), 1979.

In software engineering, it is easy to propose techniques for improving software
development but difficult to test the claims made for such techniques. This paper
suggests an error analysis technique for use in gathering data concerning the
effectiveness of different software development methodologies. The principal features
of the error analysis technique described are the formulation of questions of Interest and
a data classification scheme before data collection begins, and interviews of system
developers conc6mitant with the development process to verify the accuracy of the data.
The data obtained by using this technique during the development of a medium-size
software development project is presented. This project was known as the Architecture
Research Facilily (ARF) and took about 10 months and 192 man-weks of effort to
develop. The ARF designers used the information hiding principle to modularie the
system, and Interface specifications and high-level language coding specifications to
express the design. Several error detection aids were designed Into the system to help
detect run-time errors. In addition, quality control rules were established that required
review of specifications before coding, and review of code ofter compilation but prior to

45

testing. A total of 143 errors was reported. Analysis of these errors showed that there
were few problems caused by intermodule interfaces, that error corrections rarely
required knowledge of more than one module, that most errors took less than a few hours
to fix, and that the error detection aids detected more than half of the errors that were
potentially detectable by them. IVRB]

[Weissman 73] Lawrence M. Weissman.
Psychological Complexity of Computer Programs: An Initial Experiment.
Technical Report CSRG-26, University of Toronto, July, 1973.

In order to reduce the complexity of programs many ideas and techniques have been
expounded. However, no quantitive evidence has been given that the quality of the
programs has indeed been imporved. We believe that experimental studies should be
performed to measure those factors which make programs complex. An initial
experiment has been conducted to measure the effects of theree such factors,
comments, paragraphing, and mnemonic variable names. This report summarizes the
results of this experiment. (Abstract)

[Weissman 74] Laurence M. Weissman.

A Methodology for Studying the Psychological Complexity of Computer Programs.

Technical Report CSRG-37, University of Toronto, August, 1974.
There are many reasons for empirically testing hypotheses about the effects of various
factors on the psychological complexity of computer programs. (By "psychological
complexity" we mean the Intrinsic property of programs that affects their
understandability and maintainability.) This thesis develops a methodology for such
experimentation, and discusses the results of ten experiments involving the following
factors: use of comments, control flow paragraphing, choice of variable names, and
locality of data references. [Abstract]

[Wichmann 69] Brian A. Wichmann.

A Comparison of Algol 60 Execution Speeds.
Technical Report CCU-3, National Physical Laboratory, January, 1969.

[Wichmann 70] Brian A. Wichmann.
Some Statistics from Algol Programs,
Technical Report CCU-1 1, National Physical Laboratory, August, 1970.

Reports on dynamic analysis of 949 programs and static analysiI of 40 programs. [MS]

[Willman 77] H. E. Willman, Jr., T. A. James, A. A. Beaureguard and P. Hilcoff.
Software Systems Reliability: A Raytheon Project History.
Technical Report RADC-TR-77-188, Rome Air Development (enter, June, 1977.

This report presents results of a project to collect software data from the records of
development of a large Deportment of Defense ground-based ,ystem. A description of
the subject systems software development process, characteristics, tools, and test
methods are presented. Oualitative and quantitative data gathered from configuration
management files are included as well as statistical summaries of this data. A detailed
description of the data base files is included as well as portions of the actual data base.
Recommendations are made for the use of the data as well for the future collection of
such data. [Abstractl

[Wolverton 74] Ray W. Wolverton.
The Cost of Developir g Large-Scale Software.
IEEE Transactions on Computers 23(6), 1974.

The work of software cost forecasting falls into two parts. Fitst we make what we call
structural forecasts, and then we calculate the absolute dollar-volume forecasts.
Structural forecasts describe the technology and function of a software project, but not
its size. We allocate resources (costs) over the project's life cycle from the structural
forecasts. Judgement, technical knowledge, and econometric research should combine
In making the structural forecasts. A methodology based on a 25 x 7 structural forecast
matrix that has been used by TRW with good results over the past few years Is presented

46

in this paper. With the structural forecast in hand, we go on to calculate the absolute
dollar-volume forecasts. The general logic followed in "absolute" cost estimating can be
based on either a mental process or an explicit algorithm. A cost estimating algorithm Is
presented and five tradition methods of software cost forecasting are described:
top-down estimating, similarities and differences estimating, ratio estimating, standards
estimating, and bottom-up estimating. All forecasting methods suffer from the need for a
valid cost data base for many estimating situations. Software information elements that
experience has shown to be useful in establishing such a data base are given in the body
of the paper. Majoy pricing pitfalls are identified. Two case studies are presented that
illustrate the software cost forecasting methodology and historical results. Topics for
further work and study are suggested. [VRB)

[Wong 74] K. Wong and J.C Strauss.
Use of a Software Monitor in the Validation of an Analytic Computer System Model.
Software--Practice and Experience 4:255-263,1974.

A sampling monitor is described which examines OS/360 system tables and control
blocks periodically for CPU activity, the priority mapping of certain tasks, I/0 queuing
activity and I/0 activity of the devices on the selector channels. The monitor is a normal
task which is loaded into a 20K partition with high priority. The data derived from the
monitoring process was then used to validate an analytic model. (RTS]

[Woodfield 79] Scott N. Woodfield.
An Experiment on Unit Increase in Problem Complexity.
IEEE Transactions on Software Engineering SE-5(2):76-79, March, 1979.

The effect of a variation in problem complexity and how the variation relates to
programming complexity is predicted and measured. An experiment was conducted In
which eighteen graduate students programmed two variations of the same small
algorithm where the problem complexity varied by 25 percent. Eight measurable
program characteristics are compared with predicted values obtained using only two
known parameters. The agreement between observed and predicted values is very
good. Both predicted and observed measurements indicate that the 25 percent increase
in problem complexity results in a 100 percent increase in programming complexity.
[Abstract]

[Woodward 79] Martin R. Woodward, Michael A. Hennell and David Hedley.
A Measure of Control Flow Complexity in Program Text.
IEEE Transactions on Software Engineering SE-5(1):45-50, January, 1979.

This paper discusses the need for measures of complexity and unstructuredness of
programs. A simple language independent concept is put forward as a measure of
control flow complexity in program text and is then developed for use as ameasure of
unstructuredness. The proposed metric is compared with other metrics, the most
notable of which is the cyclomatic complexity measure. Some experience with
automatic tools for ol taining these metrics is reported. (Abstract)

[Wortman 76] D. 8 Wortman.
A Study of High-Resolution Timing.
IEEE Transactions on Software Engineering SE-2:135-137, June, 1976.

This article describes an experimental comparison of timing information provided by a
large multiprogramming system (0S/370 MVT) with timing Information derived directly
from a high resolution hardware clock. The hardware clock was found to be a superior
sou rce of timing information. (Abstract)

U+

47

[Wulf .?] W. Wulf, P. Feller, J. Zinnikas, R. Brender.
A Quantitative Technique For Comparing the Quality of Language Implementations.
In preparation.

[Yuval 75 G. Yuval.
Gathering Run-Time Statistics Without Black Magic.
Software--Practice and Experience:105-108, 1975.

The Pascal/6000 compiler was modified to add a 'turnstile' program, a piece of code that
will count how often it has been passed through, to the prologue of each routine. A
postprocessor is used to construct a profile by searching through memory looking for
turnstiles. The CDC 6000 smallest turnstile is I word (containing a subroutine call an a
counter); the fastest is 105 bits long (a word is 60 bits long) and takes 1.2 to 1.5
microseconds. (RTS]

[Zweben 79] Stuart H. Zweben and Maurice H. Halstead.
The Frequency Distribution of Operators in PL/1 Programs.
IEEE Transactions on Software Engineering SE-5(2):91-95, March, 1979.

During the past few years, several investigators have noted definite patterns In the
distribution of operators in computer programs. Their proposed models have provided
explanations for other observed software phenomena and have suggested possible
relationships between programming languages and natural languages. However, these
models contain notable deficiencies.

This study concentrates on a set of production programs written in PL/. Using some
basic relationships from software science, and a previously published algorithm
generation technique, a model for computing operator frequencies is constructed which
is based only on the number of distinct operators in the program and the total number of
operator occurrences. The model provides a considerable statistical improvement over
existing models for the PL/I programs studied. (Abstract)

I

